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Label-free intraoperative histology of bone 
tissue via deep-learning-assisted ultraviolet 
photoacoustic microscopy
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Obtaining frozen sections of bone tissue for intraoperative examination is 
challenging. To identify the bony edge of resection, orthopaedic oncologists 
therefore rely on pre-operative X-ray computed tomography or magnetic 
resonance imaging. However, these techniques do not allow for accurate 
diagnosis or for intraoperative confirmation of the tumour margins, 
and in bony sarcomas, they can lead to bone margins up to 10-fold wider 
(1,000-fold volumetrically) than necessary. Here, we show that real-time 
three-dimensional contour-scanning of tissue via ultraviolet photoacoustic 
microscopy in reflection mode can be used to intraoperatively evaluate 
undecalcified and decalcified thick bone specimens, without the need 
for tissue sectioning. We validate the technique with gold-standard 
haematoxylin-and-eosin histology images acquired via a traditional optical 
microscope, and also show that an unsupervised generative adversarial 
network can virtually stain the ultraviolet-photoacoustic-microscopy 
images, allowing pathologists to readily identify cancerous features. 
Label-free and slide-free histology via ultraviolet photoacoustic microscopy 
may allow for rapid diagnoses of bone-tissue pathologies and aid the 
intraoperative determination of tumour margins.

Approximately 18.1 million new cancer cases were diagnosed worldwide 
in 2018, while the number of new cancer cases per year is expected to 
rise to 29.5 million, with 9.6 million cancer-related deaths by 20401. 
Despite advances in cancer treatment, surgery remains the corner-
stone, and more than 80% of cancer patients have a surgical proce-
dure at some point in the cancer evolution2,3. In oncologic surgery, 
intraoperative pathological examination provides surgical guidance 
and identification of tumour margins4. The border of the removed 
tissue in tumour surgery is often examined by intraoperative frozen 
section to ensure negative margins, meaning normal tissue surrounding 
the resected tumour5. Most localized tumours with negative margin 

resection show much better outcomes and a lower chance of tumour 
recurrence. The intraoperative evaluation of tumour margins allows 
confirmation of complete tumour resection before oncologic surgeons 
close the surgical wound and helps patients avoid a second tumour 
resection surgery.

To provide rapid pathological examination and guide tumour 
resection, oncologic surgeons currently rely on the frozen section 
technique, which typically takes a small portion of tissue and freezes 
the tissue in a cryostat machine6. The frozen tissue is then cut into thin 
sections (5–8 µm) using a microtome or cryostat and stained for direct 
examination under a microscope. However, the need to section the 
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bone tumours, such as osteosarcoma, present most commonly in a 
periarticular location, 1.8 cm of margin difference could lead to joint 
salvage, increased patient bone stock for any future surgery needed 
and less morbidity10. A modality that allows for fast, accurate bony 
margin analysis would be an invaluable tool in limb-salvage surgery.

In recent years, rapid developments in imaging techniques 
have revolutionized many biological and biomedical areas as well 
as pathology. Multiple fluorescence microscopy methods have been 
demonstrated for diagnostic imaging, including confocal microscopy11, 
wide-field structured-illumination microscopy (SIM)12,13, light-sheet 
microscopy14 and microscopy with UV surface excitation (MUSE)15. 
However, these fluorescence microscopy techniques require dye 
staining of the specimen to provide image contrast, which involves 
complicated and different procedures for various samples before 
imaging and needs highly experienced personnel. Label-free optical 
imaging techniques have also been developed for rapid pathological 
diagnoses, such as stimulated Raman scattering microscopy (SRS)16,17 
and coherence tomography/microscopy (OCT/OCM)18,19. However, 
although MUSE and SRS techniques provide fast surface imaging of 
slide-free specimens, they lack depth-resolving capability and suffer 
from limited depth of field, resulting in blurred images of uneven sur-
faces with unprocessed slide-free specimens. The deconvolution-based 

specimen into thin slices prevents this technique from being used for 
hard tissue and may also cause inevitable tissue loss. For instance, the 
rapid pathological examination of calcified bone (cortical bone and 
calcified tumours) often cannot be evaluated by the frozen section 
technique due to the ossification7,8. It is usually impossible to directly 
cut the undecalcified bone tissue into slices thin enough for traditional 
pathological examination. Instead, the bone must undergo a decalci-
fication process that can take up to several days, which may introduce 
artefacts if under-decalcified or over-decalcified9.

The difficulties of rapid pathological examination of bone speci-
mens have been a long-standing challenge for orthopaedic oncologists 
in medical practice. For orthopaedic oncologists resecting primary 
bone tumours, the need for time-consuming decalcification proce-
dures often obviates pathological analysis during the operation. Thus, 
the surgeons tend toward wider margins based on pre-surgical imaging 
of bone tumours rather than intraoperative tissue analysis. Although 
wider margins are desirable for local tumour control, the functional 
loss can be much greater if those margins include vital structures 
such as tendons, nerves, blood vessels or joints. Many surgeons use 
2 cm as the ideal bony margin and measure this off the pre-operative 
imaging, while a meta-analysis performed in 2019 showed that a 2 mm 
margin is sufficient to avoid local recurrence10. Since calcified primary 
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Fig. 1 | Rapid label-free UV photoacoustic histology via deep learning.  
a, Schematic of the 3D contour scan UV-PAM system. The UV laser is spectrally 
filtered by a bandpass coloured glass filter (BF) and spatially filtered and 
expanded using a pair of lenses and a pinhole (PH). The beam sampler (BS) is 
placed before the lens to pick up a small fraction of the beam for photodiode 
measurement to compensate for the laser pulse-to-pulse energy fluctuation. 
The collimated and expanded beam is focused through a ring-shaped ultrasound 
transducer using a customized water-immersed objective and illuminates 

the specimen for photoacoustic excitation. The 3D contour-scanning of the 
specimen placed on the sample holder is implemented for UV-PAM imaging.  
b, Deep-learning network architecture for virtual staining of PAM images.  
The CycleGAN model consists of two generators, G: PA→H&E and F: H&E→PA,  
and corresponding adversarial discriminators, DPA and DHE. c, The workflow  
for PA histology and conventional H&E staining histology of bone samples 
(1 × 1 mm2 FOV).
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image fusion and multi-layer z-stacked images can be used to achieve an 
extended depth of field. However, it usually takes much longer imaging 
time, requires careful camera calibration and tedious experimental 
measurement of the point spread function, which are highly sensitive 
to noise or image variability20. While OCT has depth-resolving capabil-
ity, it cannot provide direct nuclear contrast within tissues since the 
optical scattering contrast does not have sufficient chromophore 
specificity21. Thus, OCT images cannot well match the current pathol-
ogy standard of hematoxylin and eosin (H&E) staining in detail, which 
limits its application as a pathological diagnostic tool. A comparison of 
the different imaging modalities and traditional pathology approaches 
can be found in Supplementary Table 1.

Flatness is difficult to achieve in calcified bone tumours resected 
during operation, as cutting hard and calcified bone inevitably leads 
to rough surfaces. To address these challenges, we have developed the 
real-time three-dimensional (3D) contour-scan ultraviolet photoacous-
tic microscopy (UV-PAM) and demonstrated the label-free imaging of 
thick unprocessed bone, which requires minimal tissue preparation. 
The capability of imaging the non-sectioned bone specimen allows 

direct visualization of well-preserved structure and composition of 
calcifications, which could make UV-PAM potentially an ideal tool 
for rapid diagnosis of challenging tissues such as thick calcified bone 
specimens. As a hybrid imaging modality, photoacoustic tomography 
(PAT) detects either endogenous or exogenous contrast-induced ultra-
sound signals through light absorption22,23. The wavelength-dependent 
absorption allows PAT to quantitatively measure the concentration and 
distribution of different optical absorbers, while the less-scattering 
ultrasound detection enables high-resolution deep tissue imaging. 
The unique advantage of scalable spatial resolutions and imaging 
depths makes PAT attractive for various applications, ranging from 
imaging of nanometre-scale mitochondria to millimetre-level blood 
vessels in deep tissue22. Based on imaging resolution and reconstruc-
tion approaches, PAT can be implemented in the form of either photoa-
coustic computed tomography (PACT) or photoacoustic microscopy 
(PAM)23. While PACT is mostly used for deep tissue imaging at the 
ultrasound resolution, PAM is often implemented with the optical 
diffraction-limited resolution. Utilizing the nonlinear absorption or 
Grüneisen parameter, PAM is also capable of achieving super-resolution 
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Fig. 2 | Label-free 3D contour-scanning UV-PAM of thick (>1 cm) unprocessed 
bone specimens. a–d, The UV-PAM images of the undecalcified left tibia bone 
extracted from a patient with osteofibrous dysplasia-like adamantinoma 
acquired by 2D raster-scanning (a) and 3D contour-scanning (c), showing the 
improved image quality by 3D contour-scanning of the undecalcified bone 
specimen with a rough surface. Scale bar, 500 µm. The profiles of the specimen 

surface position in the axial direction relative to the optical focal plane during 2D 
raster-scanning (b) and 3D contour-scanning (d) are calculated by the time-of-
flight information of the photoacoustic signal. e,f, A normal unprocessed thick 
bone sample is also imaged and compared using 2D raster-scanning (e) and 3D 
contour-scanning (f). Scale bar, 250 µm.
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imaging beyond the optical diffraction limits24–26. Depending on the 
illumination wavelength, various contrasts have been imaged by 
label-free PAM, including but not limited to haemoglobin27,28, DNA/
RNA29, cytochrome30, water31, lipid32 and protein33.

In this study, we report the development of the UV-PAM system 
using a 266 nm nanosecond pulsed laser and show its use for the 
histology-like imaging of bone specimens. We implemented a real-time 
3D contour-scanning mechanism to ensure consistent and optical 
diffraction-limited resolution for uneven bone specimen surfaces, 
which does not require previous knowledge of the surface profile. Using 
the UV-PAM system, we show histology-like imaging of unprocessed 
thick bone specimens with rough surfaces, which is challenging to 
carry out with traditional histological techniques. The UV-PAM images 
of both decalcified and undecalcified bone sections were acquired and 
compared with gold-standard H&E histology images for validation. In 
addition, we present an unsupervised deep-learning-based method 
for performing virtual H&E staining of greyscale UV-PAM images, to 
provide pathologists with complementary contrast and to help them 
interpret PAM images. Unlike supervised deep-learning methods 
such as generational adversarial networks (GAN)34,35, our unsuper-
vised deep-learning method based on cycle-consistent generational 
adversarial networks (CycleGAN) does not require coupled pairs of 
stained and unstained images36,37. It avoids the need for well-aligned 
UV-PAM and H&E histology images for neural-network training, which 
can be challenging to acquire owing to artefacts caused by sample 
preparation-induced morphology changes.

Results
Histopathological examination of bone tissue via UV-PAM
With optical focusing and the time-of-flight information from photoa-
coustic (PA) signals, PAM images the contrast distribution in 3D. The 
PA signal is received by a 42 MHz ultrasound transducer and digitized 
by a data acquisition card sampling at 500 MHz. We found that PAM 
can localize the z positions of the sample surface with accuracy finer 
than the acoustical resolution (~40 µm) by a factor of approximately 10 
as limited by the signal-to-noise ratio. The UV-PAM employs a 266 nm 
nanosecond pulsed laser to image the DNA/RNA. While the penetration 
depth depends on the sample type, in bone specimens, we found that 

the UV light penetration is less than the acoustical resolution. Thus, no 
deep PA signal is generated and mixed with surface signals, allowing 
direct imaging of the surfaces of thick bone specimens. While soft tis-
sue can be sampled or squeezed with a flat surface, unprocessed hard 
tissues (that is, calcified primary bone; Supplementary Fig. 1) usually 
have a rough surface due to tissue extraction.

The 3D contour-scanning UV-PAM (Fig. 1a) allows direct imaging 
of thick specimens with rough surfaces, providing the possibility of 
rapid pathological diagnosis of undecalcified thick bone. Since the 
height differences in adjacent B-scan positions (0.625 µm away from 
each other) can be reasonably assumed to be much smaller than the 
depth of focus (DOF) of our UV-PAM (~9 µm), the z contour-scanning 
trajectory can be predicted and updated in real time after the first seed 
B-scan for the full field of view (FOV), without previous knowledge of 
the surface contour (Supplementary Fig. 2). Thus, the real-time 3D 
contour-scanning UV-PAM can ensure that the distance between the 
image position and the focal plane is within the DOF, resulting in a con-
sistent diffraction-limited lateral resolution for rough surface imaging. 
The performance of the proposed contour-scanning mechanism has 
been tested using a phantom with a bent black tape, which showed 
well-compensated distances in the full FOV (Supplementary Fig. 3a–c). 
The measured lateral resolution is 0.96 µm (Supplementary Fig. 3d).

After acquiring a greyscale UV-PAM image of the sample surface, 
the unsupervised deep learning method based on CycleGAN is used to 
implement the virtual staining. The deep-learning network architec-
ture (Fig. 1b) for virtual staining consists of two generators (G and F)  
and corresponding adversarial discriminators (DPA and DHE). Each 
pair of generators and discriminators are trained so that the outputs 
of G and F are indistinguishable from real PAM and H&E histology 
images, respectively. The generators are further regularized using the 
cycle-consistency loss—transforming an image from one domain and 
back should recover the original input. This process ensures that the 
transformations are bijective and produce corresponding morphology. 
The combination of cycle consistency and discriminator loss terms 
avoids the necessity for well-aligned paired datasets, which are needed 
in traditional l2-norm or similar loss training between a network output 
and a target label. With the neural network well trained, it takes less than 
5 s to virtually stain an image of 1,600 × 1,600 pixels.

a b

c d

Fig. 3 | Label-free UV-PAM of decalcified bone specimens. a, PAM image 
of a FFPE decalcified non-neoplastic bone fragment on a glass slide. A near 
vertically oriented trabecula of cancellous bone is seen in the middle portion 
of the image. Scale bar, 500 µm. b, A close-up image of a showing a portion of 
the cancellous bone at the left border of the image. Scale bar, 100 µm. c, PAM 

image of a FFPE decalcified bone specimen with metastatic poorly differentiated 
adenocarcinoma of pulmonary origin shows neoplastic glandular profiles of 
metastatic carcinoma on a glass slide. Scale bar, 500 µm. d, A close-up image of c 
shows nests and glandular profiles of metastatic carcinoma. Scale bar, 100 µm.
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Thanks to the real-time 3D contour-scanning UV-PAM system and 
deep-learning-assisted virtual staining, the rapid diagnosis of unpro-
cessed bone becomes possible. The workflows of both PA histology and 
traditional H&E histology of bone clearly reveal the advantage of PA 
histology (Fig. 1c). While the frozen section technique is not applicable 
to hard bone specimens, conventional H&E histology techniques for 
bone can take up to 7 days. In contrast, the PA histology technique can 
produce virtually stained images of unprocessed bone for pathological 
examination within 11 min (0.625 µm step size, 1 × 1 mm2 FOV).

3D contour-scanning UV-PAM of thick patient bones
To demonstrate the imaging of unprocessed thick bone specimens for 
rapid pathological diagnosis, we extracted mineralized primary bone 
specimens from patients in a tumour resection surgery. Unprocessed 
bone specimens were immediately fixed in the formalin solution after 
surgical excision to prevent degradation. No further cutting or section-
ing was implemented with the bone specimen, avoiding the need for 
paraffin or agarose embedding. Then, the bone specimen was placed 
onto a customized water-immersed sample holder for scanning. We 
obtained the left tibia bone specimens from a patient with osteofi-
brous dysplasia-like adamantinoma, which has a rough surface due to 
the surgical excision by an oscillating saw. The image acquired by 2D 
raster-scanning without contour compensation (Fig. 2a) shows a large 
portion of the out-of-focus area within the FOV (2.5 × 6.25 mm2), result-
ing in an inconsistent resolution and poor image quality. The rough 
bone surface profile is reconstructed by the PA signal time-of-flight 
information (Fig. 2b), revealing large fluctuation in surface height 
and less than 10% of the pixels within the DOF. In contrast, the UV-PAM 
image acquired by 3D contour-scanning of the same area showed an 

improved image quality and consistent resolution across the FOV  
(Fig. 2c). More than 92% of the surface area is within the small DOF dur-
ing the 3D contour-scanning (Fig. 2d). Another comparison between the 
2D raster-scanning PAM image and the 3D contour-scanning PAM image 
of unprocessed patient bone can be found in Fig. 2e,f. As shown in Fig. 2f, 
important bone structures, such as trabeculae and marrow, can be visu-
alized by UV-PAM with specimen integrity. More 3D contour-scanning 
UV-PAM demonstrations of undecalcified thick bone specimens can 
be found in Supplementary Figs. 4 and 5. It clearly shows that the 3D 
contour-scanning UV-PAM system is capable of imaging the rough 
surfaces of unprocessed thick bone specimens. In contrast, it is difficult 
to acquire high-quality images using the traditional 2D raster-scanning 
approach. Since UV-PAM imaging is non-destructive, the unprocessed 
bone specimens can be used for further pathological diagnosis.

H&E validation for label-free UV-PAM of bone specimens
Since the traditional H&E histology slice of bone usually requires decal-
cification and cutting into thin sections (that is, 5–8 µm), we first dem-
onstrated UV-PAM imaging of a formalin-fixed paraffin-embedded 
(FFPE) decalcified bone fragment without malignancy on a glass slide. 
As shown in Fig. 3a,c, obvious bone structures, including decalcified 
mineralized bone, can be readily visualized. In addition, the close-up 
images (Fig. 3b,d) demonstrate profiles and nests of metastatic carci-
noma within the medullary space of the bone. The decalcified bone 
specimen from the patient with chondroblastic osteosarcoma is also 
imaged by UV-PAM and shown in Supplementary Fig. 6.

To validate the PA histology of bone fragments, we compared 
UV-PAM images of both decalcified and undecalcified bone specimens 
with gold-standard H&E histology images acquired by a traditional 

a b

c d

Fig. 4 | Label-free UV-PAM for identifying tumours in decalcified bone 
fragments. a, PAM image of a decalcified bone section on a glass slide with 
metastatic adenocarcinoma. b, PAM image of a decalcified bone section on a 
glass slide with normal bone fragment and hematopoietic marrow. The PAM 

contrast is reversed to highlight the high-absorption region in dark color for 
better comparison. c,d, Corresponding H&E images of a and b. Neoplastic glands 
of metastatic carcinoma among bone fragments are indicated by red arrows in a 
and c. Scale bars, 500 µm.
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optical microscope. Here, the contrast of PAM images is reversed to 
highlight the high-absorption region in dark colour for better com-
parison with H&E histology images. A comparison between the original 
greyscale image and the image in reversed contrast can be found in 
Supplementary Fig. 7. The decalcified bone section on a glass slide 
extracted from a patient with metastatic adenocarcinoma was imaged 
by UV-PAM (Fig. 4a) and compared with its corresponding H&E histol-
ogy image (Fig. 4c). The UV-PAM image demonstrates the key features 
present in the H&E histology image, in which abnormal tumour glands 
are readily observable (indicated by arrows). Meanwhile, the PAM 
image of decalcified fragments of bone and hematopoietic marrow 
with no evidence of metastatic carcinoma (Fig. 4b) also shows the 
same structure as its corresponding H&E result (Fig. 4d). Furthermore, 
the undecalcified bone slices were imaged by PAM and compared 
with H&E histology images, to avoid potential artefacts that might 
be introduced by the decalcification procedures. Since these speci-
mens were collected from a portion of the tumour with low calcifica-
tion, they did not require the decalcification procedure to section the 
specimen into thin slices. The PAM images (Fig. 5a–c) of undecalci-
fied bone sections on a glass slide are presented in reverse contrast.  
Figure 5a,b demonstrate features of osteoblastic osteosarcoma, while 
Fig. 5c demonstrates the myxoid lobules of chordoma. The correspond-
ing H&E histology images were acquired by the digital whole-slide scan-
ning microscope with a ×40 objective (Fig. 5d–f) and show essentially 
identical structures as the PAM images. Close-up images in sliding 
windows are shown in Supplementary Video 1. Another example of 
UV-PAM and H&E comparison can be found in Supplementary Fig. 8, 
which was from a decalcified bone slice with high-grade osteosarcoma 
from the femur. The necrotic tumour (Supplementary Fig. 8b) and the 
viable tumour (Supplementary Fig. 8c,d) can be identified using the 
PAM images, which also show comparable features as the H&E histology 
images (Supplementary Fig. 8f,g).

Photoacoustic virtual histology via deep learning
To match traditional histologic images, we performed virtual H&E 
staining on the greyscale PAM images using a CycleGAN-based 
deep-learning method36. The virtual staining CycleGAN network 
architecture is shown in Fig. 6. More detailed procedures of generat-
ing virtually H&E-stained PAM images are described in Methods. The 

example UV-PAM images of the bone section are shown in greyscale 
contrast (Supplementary Fig. 9) and in histology-like pseudocolour 
(Fig. 7a,c), which demonstrate architectural features as well as cel-
lular details similar to the corresponding H&E images (Fig. 7b,d). The 
close-up virtual histologic PAM images (Fig. 7a(i,ii),c(i,ii)) clearly show 
histologic features that would be important in the interpretation 
of pathological examination and that correspond to the close-up 
H&E images (Fig. 7b(i,ii),d(i,ii)). The virtual histologic images have 
been reviewed by three pathologists and one orthopaedic surgeon, 
who confirmed the comparable and interpretable histologic features 
present in the H&E histology slides that might be used for clinical 
diagnosis. More details of close-up images from the virtually stained 
PAM images and corresponding H&E histology images are shown 
in Supplementary Videos 2 and 3 for side-by-side comparison. The 
cell nuclear counts, nuclear cross-sectional areas and internuclear 
nearest-neighbour distances are quantitatively compared in Supple-
mentary Fig. 10 and Table 2, demonstrating a good match between the 
virtual-staining photoacoustic image and the corresponding real H&E 
histology image. As shown in Supplementary Table 2, internuclear 
distances in two images match within the errors. The cell counts and 
nuclear cross-sectional areas are slightly different, which is expected 
as we were looking at neighbouring sections taken at different axial 
positions instead of the same section.

Discussion
The development of 3D contour-scanning UV-PAM in reflection mode 
enables more rapid pathological examination of bone specimens. 
In contrast, traditional pathological examination techniques for 
bone involve time-consuming decalcification procedures, and the 
frozen-section technique is often not applicable. With the bone mineral 
as its major component, dense cortical bones can take days to decalcify 
before it is soft enough to be sectioned into thin slices, which prevents 
rapid intraoperative diagnosis. Currently, orthopaedic surgeons heavily 
rely on pre-operative X-ray CT or magnetic resonance imaging to iden-
tify the extent of the tumour for the planning of resection margins. How-
ever, these imaging modalities cannot provide accurate diagnosis and 
intraoperative confirmation of tumour margins. The reflection-mode 
contour-scanning UV-PAM enables label-free imaging of unprocessed 
thick bone samples with rough surfaces, providing detailed information 

a b c

d e f

Fig. 5 | Label-free UV-PAM of undecalcified bone specimen and H&E 
validation. a,b, UV-PAM images of undecalcified patient bone sections on a glass 
slide from patient #1 with osteoblastic osteosarcoma showing neoplastic osteoid 
matrix—the lacy material in between the nuclei of the neoplastic cells, denoted 
by red arrows. c, UV-PAM images of an undecalcified patient bone section on a 

glass slide from patient #2 with chordoma, demonstrating lobules of the myxoid 
tumour, denoted by red arrows. d–f, Corresponding H&E images acquired by a 
digital whole-slide scanning microscope with a ×40 objective, with an essentially 
identical appearance. Scale bars, 500 µm.
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for rapid pathological examination of the tumour margin, meeting a 
critical need for intraoperative margin analysis.

When rendering a diagnosis from standard H&E histology slides, 
pathologists examine the architecture morphology and cellular fea-
tures such as cell nuclei, cytoplasm and extracellular matrix. The H&E 
staining approach has been widely used for a long time in histology, 
as it provides a clear contrast between cell nuclei and cytoplasmic 
parts by staining them in different colours. Thus, pathologists are 
accustomed to the stained and counterstained appearance of H&E 
histology tissue samples, which show extracellular matrix and cyto-
plasm as pink, and cell nuclei as blue/purple. At the UV wavelength 
of 266 nm38, cell nuclei have much higher absorption coefficient and 
PA amplitudes than the extracellular matrix and cytoplasm, allowing 
their virtual labelling in different colours similar to H&E staining. We 
processed greyscale PAM images and generated pseudocolour images 
for virtual H&E staining by applying the deep-learning approach with 
CycleGAN, which does not need well-aligned PAM and H&E histology 
image pairs for neural-network training. The virtually stained pseudo-
colour PAM images demonstrated cellular, nuclear and cytoplasmic 
detail matching the corresponding H&E histology images. With more 
clinically relevant PAM virtual histology results, the deep convolutional 
neural-network technique may be further used to potentially achieve 
automatic diagnosis and tumour margin detection16.

Although we have demonstrated the potential of UV-PAM for 
rapid diagnosis of unprocessed bone specimens, further improve-
ments can be made toward better clinical use. One key challenge is to 
improve the image speed to allow for faster intraoperative feedback. 
The current UV-PAM system employs a pulsed 266 nm laser with a 
pulse repetition rate of up to 50 kHz, which limits the theoretical 
image speed to an A-line rate of 50 kHz. However, due to the accu-
racy and stability of step motors, it is challenging to ensure a good 
image quality of UV-PAM at high motor speeds. The current system 
is running at 10 kHz laser repetition rate, which takes about 10 min 
in practice to scan an FOV of 1 × 1 mm2 at the step size of 0.625 µm. To 
achieve higher imaging speeds, we can use faster optical scanning 

approaches and even higher laser repetition rates39. Moreover, mul-
tichannel parallel imaging can be used to further boost the imaging 
speed, where multiple focal spots and an ultrasound transducer array 
are used for image reconstruction. For instance, a microlens array can 
be utilized to create multiple focal spots for multichannel parallel 
imaging, which has been reported to improve the imaging speed of 
UV-PAM by 40 times40. However, the limited numerical aperture and 
the short working distance of the microlens array can only be used 
in transmission-mode UV-PAM, which impedes its practical use for 
high-resolution images of thick unprocessed biological samples. 
Reflection-mode multichannel UV-PAM with high resolution will be 
needed for faster intraoperative diagnosis.

Due to the physical limit of z-motor mechanical movement, which 
cannot adjust position fast enough, a small portion (for example, ~6.3% 
in Fig. 2c) of the areas may still fall out of the DOF if we scan a large 
FOV (for example, 6 × 8 mm2). To further improve the performance 
of high-resolution PAM imaging of rough surfaces, an electrically 
tunable lens may be integrated into our system to allow faster optical 
focus shifting with high accuracy41. Since the acoustical DOF of the 
focused ultrasonic transducer is often much longer (that is, hundreds 
of microns) than the optical DOF, the optical focus shifting within the 
acoustic DOF can be used to compensate for the steep height fluctua-
tion, while the time-dependent gain compensation technique can be 
used to compensate for the transducer sensitivity difference within 
the acoustic DOF42.

Compared with traditional intraoperative pathological methods 
(that is, freeze sectioning), photoacoustic histology can lower costs by 
reducing the turnaround time and avoiding highly specific personnel 
for sample preparation and specimen transportation. It may also enable 
remote and automatic pathological diagnostics in the future. The cur-
rent UV-PAM system employs a Q-switched neodymium-doped yttrium 
lithium fluoride (Nd:YLF) nanosecond pulsed UV laser at a wavelength 
of 266 nm to generate photoacoustic signals of cell nuclei, which may 
be challenging for in vivo imaging due to the safety concern of UV laser. 
The need for nanosecond pulsed UV laser increases the cost of the PAM 
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network is applied to image patches of 256 × 256 pixels.



Nature Biomedical Engineering 8

Article https://doi.org/10.1038/s41551-022-00940-z

system. Further developments using longer laser wavelengths for pho-
toacoustic histological imaging will not only enable in vivo imaging but 
also significantly lower equipment cost. Another limitation is that the 
current system requires specimens to be mounted onto a sample holder 
and immersed in water for mechanical scanning and acoustic coupling, 
which is suboptimal for high-throughput histological imaging. A better 
configuration that allows the specimen to be outside the water tank 
will ensure even easier sample handling for rapid high-throughput 
histological imaging.

In summary, we have shown that label-free UV-PAM is a valid 
method for imaging unprocessed bone without the need for tissue 
sectioning. The immediate clinical indication for these results is to 
possibly provide rapid pathological examination of bone tumour 
margins. Because no physical sectioning is needed, it does not require 
highly specific trained technicians for bone-specimen preparation. 
Moreover, the undestroyed bone specimen can be further examined 
by other techniques after label-free UV-PAM imaging. Although in this 
work we have focused on bone, which is one of the most challenging 
biological tissues in rapid pathological diagnosis, the imaging system 
can also be applied to other types of specimens. We believe it could 

aid pathological diagnosis and provide immediate feedback for the 
intraoperative determination of tumour margins.

Methods
All experiments and protocols in this study were approved by the Insti-
tutional Review Boards at the California Institute of Technology, the 
University of California at Los Angeles and the City of Hope.

Label-free reflection-mode UV-PAM
The reflection-mode UV-PAM system used an Nd:YLF Q-switched 
266 nm nanosecond pulsed laser (QL266-010-O, CrystaLaser). A band-
pass glass filter (FGUV5, Thorlabs) was placed at the laser output to 
reject the leaked pump light. After passing the coloured glass filter, a 
small portion of the beam was reflected by a UV-fused silica beam sam-
pler (BSF10-UV, Thorlabs) and directed to a Si photodiode (PDA36A, 
Thorlabs) for pulse-to-pulse fluctuation compensation. The UV laser 
beam was expanded by a pair of plano-convex lenses and spatially 
filtered by a 15 µm high-energy pinhole (900PH-15, Newport). The 
expanded and collimated beam was then focused onto the sample by 
a custom-made water-immersion UV objective lens (consisting of an 
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Fig. 7 | Label-free UV-PAM virtual histology of undecalcified bone via 
unsupervised deep learning. a,c, Virtual-stained PAM images of undecalcified 
bone sections on a glass slide. b,d, Corresponding H&E histology images. In a, 
close-up images show neoplastic spindle cells (denoted by many long, spindle-
shaped purple nuclei, red arrow) arranged in vague streaming and fascicular 
patterns (i), and a nodule of neoplastic chondroid material (ii, yellow circle), 

corresponding to H&E histology images in b(i),(ii). In c, close-up images show 
ribbons of neoplastic spindle cells (i, red arrow) and disorganized osteoid, 
the streaky bands denoted by the yellow circle (ii), corresponding to the H&E 
histology images in d(i),(ii). Scale bars, 500 µm (a–d), 100 µm (in all closed-up 
images).
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aspheric lens, a concave lens and a convex lens (NT49-696, NT48-674, 
NT46-313, Edmund Optics)) with a numerical aperture of 0.16. A cus-
tomized ring-shaped ultrasonic transducer (42 MHz centre frequency, 
76% −6 dB two-way bandwidth) with a central aperture was used to 
detect the PA signal, which allows optical and acoustical confocal align-
ment. The detected signal was amplified by two low-noise amplifiers 
(ZFL-500LN+, Mini-Circuits) and digitized by a data acquisition card 
(ATS9350, Alazar Technologies) at a 500 MHz sampling rate. The PAM 
image was acquired by scanning the water-immersed sample mounted 
onto a customized 3D scanner (consisting of three step motors, PLS-
85, PI Micos). The reconfigurable I/O device (myRIO-1900, National 
Instruments) with a field-programmable gate array was used to control 
and synchronize laser pulses, motor movements and data acquisition.

Real-time 3D contour-scanning UV-PAM
To allow imaging of the rough surface of unprocessed thick samples 
like bone, we developed the contour-scanning mechanism without 
previous knowledge of the sample surface using a 3-axis motorized 
stage, which ensures consistent lateral resolution within a large field 
of view. For consistent and optimized optical resolution, the distance 
between the sample and optical focus should be maintained within the 
DOF during scanning. In contour scanning, the time-of-flight informa-
tion of PA signals was used to calculate the distance between the sample 
and the focal spot, which could be adjusted by the z-motor during 
scanning. With the numerical aperture of 0.16, the DOF of our UV-PAM 
microscope was only about 9 µm, which corresponds to 6 ns ultrasound 
propagation for a speed of sound of 1,500 m s−1 at room-temperature 
water. The acquired PA signal was digitized at the sampling rate of 
500 MHz (ATS9350, AlazarTech). The z-profile of the sample surface 
could be accurately calculated using the time-of-flight information of 
PA signals, enabling contour scanning for z-position compensation.

Before PAM imaging, the optical and acoustic foci were confocally 
aligned, while the propagation time of the acoustic signal from the 
optical focus was recorded to determine the focal spot position. To 
extract the ultrasound propagation time, we calculated the centres of 
positive and negative peak positions in PA A-line signals, which were 
converted to the sample position. Without previous knowledge of the 
sample surface profile, one seed B-scan with the z-motor disabled was 
implemented to calculate the starting contour trajectory. To avoid 
potential noise interference and remove outliers, a 100-point moving 
average was used to generate a smooth z-scanning trajectory. During 
the contour scanning, both the x-axis and the z-axis motors moved 
simultaneously. After the first contoured B-scan, the z-motor trajec-
tory and the distance between the sample surface and the ultrasonic 
transducer were calculated and used to compute the accurate surface 
profile. Due to the small y step (0.625 µm), we set the second z-motor 
trajectory to follow the surface profile from the previous contoured 
B-scan43. Then, the surface profile was updated according to the second 
contoured B-scan. This process was repeated until the whole scanning 
was completed. Real-time data processing and system control were 
implemented using MATLAB and LabVIEW hybrid programming.

Bone specimen preparation and H&E imaging
The bone specimens for UV-PAM imaging were procured, with the 
informed consent of patients, from larger specimens in the pathol-
ogy laboratory, the specimens having been surgically removed from 
patients at the City of Hope and the UCLA medical centre. All bone 
specimens were fixed in 10% buffered formalin before any other proce-
dures. For thick undecalcified specimens in this study, the specimens 
were mounted to the sample holder for imaging without further pro-
cessing. To decalcify specimens, we treated the bone specimens with 
a decalcifying solution containing chelating agents in dilute HCl, with 
the treatment time varying depending on the size and hardness of the 
specimens. After fixation and decalcification, the specimen was embed-
ded in paraffin wax, sectioned into 5-µm-thick slices and placed on 

glass slides. Specimens with less calcification were sectioned without 
decalcification. These slices were then processed with standard H&E 
staining and cover-slipped. The H&E histology slides were imaged using 
either the standard optical microscope or the digital whole-slide scan-
ning microscope (Leica Aperio AT2) with a ×40 objective.

UV-PAM virtual histology via CycleGAN
To reconstruct the UV-PAM images, we first calculated the PA amplitude 
of each A-line signal after the Hilbert transform. The pulse energy 
measured by the photodiode was used to normalize the PA amplitude 
and compensate for the laser pulse fluctuation. The axial position 
of the specimen surface was calculated by detecting the peak of the 
A-line signal after the Hilbert transform. The 2D maximal amplitude 
projection image was self-normalized. Since the PA amplitude of the 
contrast is proportional to its absorption coefficient, it can be used to 
effectively differentiate cell nuclei, cytoplasm and the background. 
The cell nuclei have the largest absorption coefficient at 266 nm and 
the highest PA signals. After calculating the greyscale UV-PAM, we 
used a trained neural network to perform virtual H&E staining, which 
is more familiar to pathologists and thus easier for them to interpret.

We used the CycleGAN architecture36, shown in Fig. 6, which can 
learn how to map images from the UV-PAM domain, PA, to the H&E 
domain, HE, without the need for well-aligned image pairs. We used 
an adversarial loss to learn the transformations G: PA → HE and F:  
HE → PA, such that the images G(PA) and F(HE) are indistinguishable 
from HE and PA, respectively. The discriminators were trained to dis-
tinguish between real images and those produced by the generators. 
The loss function for DHE is given by44

lDHE = DHE (G (PA))
2 + (1 − DHE (HE))

2 , (1)

where PA is a UV-PAM image patch, and HE is an H&E histology image 
patch. Similarly, the loss function for DPA is given by

lDPA = DPA (F (HE))
2 + (1 − DPA (PA))

2 . (2)

The generators were trained to try and fool the discriminators 
by producing images that match the statistical properties of the tar-
get domain. To ensure that G does not simply produce convincing 
but irrelevant H&E images, an additional loss term is necessary. Con-
ventionally, this would be the l2 or l1 norm loss between the network 
output and some known ground-truth image. However, this requires 
well-aligned paired datasets, which are challenging to acquire after 
sample preparation.

Instead, the CycleGAN architecture learns the inverse transforma-
tion so that cycle consistency can be used to ensure that the images are 
of the same structures. The total loss for the generators is

lG = (1 − DHE (G (PA)))
2 + (1 − DPA (F (HE)))

2 + λ |F (G (PA)) − PA|

+λ |G (F (HE)) −HE| ,
(3)

where the regularization parameter λ is set to 10.
The generators are residual networks consisting of an input convo-

lutional layer, two convolutional layer and downsampling blocks, nine 
residual network blocks, two convolutional and upsampling blocks 
and, finally, an output convolutional layer45. Instance normalization 
and ReLU layers were used after each convolutional layer. For the dis-
criminator, we used PatchGAN consisting of convolutional layer and 
downsampling blocks, which classify whether the image is real on over-
lapping 70 × 70 pixel image patches46. This patch size is a compromise 
between promoting high spatial frequency fidelity and avoiding tiling 
artefacts. In the discriminator networks, instance normalization and 
leaky ReLU (lReLU) layers, lReLU(x) = max(0.2x, x), were used after 
each convolutional layer. Anti-alias downsampling and upsampling 
layers were used in both the generators and discriminators to improve 
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shift invariance47.
The training dataset consisted of UV-PAM images of undecalci-

fied bone specimens. These images were converted into 17,940 and 
26,565 286 × 286 pixel image patches for UV-PAM and H&E histology, 
respectively. During training, these were further randomly cropped 
to 256 × 256 for data augmentation. The training was performed with 
the Adam solver, with a batch size of 4 and an initial learning rate of 
0.0002, decaying to zero over 100 epochs48. Once trained, we used the 
generator G to transform UV-PAM data into overlapping 256 × 256 pixel 
image patches, which were recombined with linear blending. To vali-
date the virtual histology performance, we quantitatively assessed the 
accuracy of our virtual staining method. We segmented the cell nuclei 
in comparative regions of interest to compare their numbers, sizes 
and densities. The nuclear segmentation was performed via Qupath49, 
using the default cell detection settings with the threshold set to 0.3 
to reduce false positives. The cell counts, average nuclear areas and 
average nearest-neighbour internuclear distances were calculated for 
comparison of the UV-PAM virtual histology and H&E results.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
The main data supporting the findings of this study are available within 
the paper and its Supplementary Information. The training dataset 
and the fake output images for the CycleGAN network are available at 
https://doi.org/10.5281/zenodo.6345772. The raw data generated dur-
ing the study are too large to be publicly shared, yet they are available 
for research purposes from the corresponding authors on reasonable 
request.

Code availability
The original code for CycleGAN is available at https://github.com/
junyanz/pytorch-CycleGAN-and-pix2pix. We applied this code to our 
dataset with the customized settings described in Methods. MATLAB 
was used for creating image tiles for the network and for restitching the 
output image tiles. The quantitative analysis of photoacoustic virtual 
histology was done via QuPath (https://qupath.github.io). The system 
control software and the data collection software are proprietary and 
used in licensed technologies.
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A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection LabVIEW 2015, AlazarTech ATS-VI 5.8.3, Leica Aperio AT2, Matlab.

Data analysis The deep-learning models reported in this work were adapted from code available at https://github.com/junyanz/pytorch-CycleGAN-and-
pix2pix, which used the PyTorch v1.4.0 (Facebook Inc.) library for Python v3.6. Tiling and stitching procedures were performed using 
customized Matlab vR2021a codes (The MathWorks Inc.). Training and testing for virtual staining were performed on a graphics processing 
unit (GPU) node with 4 Nvidia P100 GPUs. The quantitative analysis of photoacoustic virtual histology was done via QuPath (https://
qupath.github.io).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The main data supporting the findings of this study are available within the paper and its Supplementary Information. The training dataset and the fake output 
images for the CycleGAN network are available at https://doi.org/10.5281/zenodo.6345772. The raw data generated during the study are too large to be publicly 
shared, yet they are available for research purposes from the corresponding author on reasonable request.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Six unprocessed thick bone specimens and eight bone sections were used to repeat the imaging experiment. No statistical analysis was 
required. The neural network was trained using data from 2 different tissue samples imaged by PAM and 4 different H&E-stained tissue 
samples. The PAM and H&E data were split into 89,590 and 133,455 256 x 256 pixel image patches, respectively. These numbers were 
sufficient to generate virtually stained bone images that cannot be differentiated from H&E images by pathologists. 

Data exclusions No data were excluded.

Replication All attempts at replication of photoacoustic imaging  were successful. After the training of the deep neural networks, they were tested on two 
tissue slides (composed of 19,065 overlapping 256 x 256 pixel patches); one was tested blindly, the other was included in the training dataset. 
These were compared to images of corresponding H&E-stained samples. 

Randomization The samples were obtained from the Pathology Core Laboratory on the basis of sample availability. Randomization was not needed for this 
study.

Blinding The virtually stained results in this study were performed blindly on data that were not included during the training of the networks. 
Pathologists were not blinded to sample information.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics All the tissue sections used were obtained after de-identification of patient-related information, and were prepared from 
leftover specimens. Therefore, this work did not interfere with standard practices of care or with sample-collection 
procedures.

Recruitment No active recruitment was needed. We used de-identified leftover tissue specimens that had been archived, and therefore 
that had not been collected specifically for this research.

Ethics oversight All experiments and protocols used in the study were approved by the Institutional Review Boards at the California Institute 
of Technology, the University of California at Los Angeles, and the City of Hope.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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