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Abstract 

We use a new theory termed co-quantum dynamics (CQD) to numerically model spin flip in the 

multi-stage Stern–Gerlach (SG) experiment conducted by R. Frisch and E. Segrè. This 

experiment consists of two Stern–Gerlach apparatuses separated by an inner rotation chamber 

that varies the fraction of spin flip. To this day, quantum mechanical treatments inadequately 

predict the Frisch–Segrè experiment. Here, we account for electron-nuclear interactions 

according to CQD and solve the associated Schrödinger equation. Our simulation outcome 

agrees with the Frisch–Segrè experimental observation and supports CQD as a potential model 

for electron spin evolution and collapse. 
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Introduction 

In what is now the prototypical example of quantum measurement [1]–[3], the experiment of 

Stern and Gerlach in 1922 provided evidence of the quantization of spin. A decade later, Frisch 

and Segrè extended this experiment to include two Stern–Gerlach (SG) stages separated by an 

inner rotation (IR) chamber with rapidly rotating magnetic fields, resulting in partial spin 

flipping [4]. The quantum mechanical models of the Frisch–Segrè experiment include those by E. 
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Majorana [5] and I. I. Rabi [6]–[8]. Majorana's formula is similar to the Landau–Zener formula, to 

which Rabi added the effects of electron-nuclear spin interaction. Surprisingly, these treatments 

inadequately explain the experimental observation.  

 

To predict the experimental observation, the co-quantum dynamics (CQD) theory was developed 

by introducing the following concepts [9], [10]. CQD considers the interaction between the 

electron (𝜇𝑒) and nuclear (�⃗�𝑛) magnetic moments through the torque-averaged instead of self-

averaged magnetic field, introduces an induction term, and treats �⃗�𝑛  as a non-collapsing co-

quantum of the principal quantum �⃗�𝑒. The strength of the electron–nuclear coupling depends on 

the magnitudes and relative orientations of �⃗�𝑒 and �⃗�𝑛 [11]. Although it is weaker than spin-orbit 

coupling, this coupling is important for an electron spin in the S state where the orbital angular 

momentum vanishes on average [12]. The electron spin is influenced by not only the external 

magnetic field but also the nuclear magnetic field �⃗⃗�𝑛 due to the presence of �⃗�𝑛. Therefore, the 

evolution of �⃗�𝑒  in the IR chamber results from the combined effects of �⃗⃗�𝑛  and a quadrupole 

magnetic field �⃗⃗�𝑞 , which is generated by combining the magnetic field from the wire and a 

vertical remnant fringe magnetic field �⃗⃗�𝑟 [5]. In SG apparatuses with a strong external magnetic 

field �⃗⃗�0, the magnetic moments of the electron and nucleus precess in opposite directions at 

different speeds. As a result of induction in the electron–nuclear interaction, �⃗�𝑒 is repelled by �⃗�𝑛 

to either align or anti-align with �⃗⃗�0, in other words, collapses to the eigenstates. In contrast to 

precession, collapse can be regarded as the secondary motion of the electron magnetic moment. 

The electron spin collapses much faster than the nuclear spin due to the slower precession of �⃗�𝑛, 

so we neglect the collapse of the co-quantum. 

 

The co-quantum guides the collapse of the principal quantum according to their relative 

orientations at the time of measurement, yielding the CQD branching condition [9], [10]. CQD 

has been shown to statistically recover the quantum mechanical wave function from the 

continuous angular distribution of the co-quantum that is assumed to be isotropic for atoms 

immediately out of the oven (see Figure 1) [9], [10]. However, the angular distribution of the co-

quantum is altered by the collapse of the principal quantum. Selection of one branch of an SG 

apparatus automatically selects the portion of the co-quanta that could guide the principal quanta 
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to the specific eigenstate (see Results). Therefore, neither branch of the SG output has an 

isotropic distribution of co-quanta, which has not been considered in previous theories for multi-

stage SG experiments [5], [6].  

 

Here, we present a numerical simulation using the Schrödinger equation based on the torque-

averaged magnetic field �⃗⃗�𝑛 of the co-quantum with a continuous angular distribution, along with 

the branching condition, to yield a CQD model for the flip of electron spin in the Frisch–Segrè 

experiment. Our numerical simulation agrees with the Frisch–Segrè experimental observation 

and confirms our previous closed-form analytical solution of CQD [9], [10], which builds on the 

insightful analysis by Majorana [5]. 

 

 

Figure 1. Illustration of the multi-stage SG experiment conducted by Frisch and Segrè. 

Potassium atoms from an oven are sent to the first SG apparatus (SG1). Conceptually, a slit is 

used to select the up branch of SG1; although this slit was physically placed after the quadrupole 

field in the experiment, we relocate it to simplify the analysis. |+𝑧⟩ and |−𝑧⟩ denote the up state 

and down state of �⃗�𝑒, respectively. Atoms travel along the 𝑦-axis through a quadrupole magnetic 

field �⃗⃗�𝑞 . The center (null point) of the quadrupole field is at 𝑟null = (0,0, −𝑧𝑎), where 𝑧𝑎 =

1.05 × 10−4 m. Following the spin rotation by the quadrupole field, the second SG apparatus 

(SG2) measures the fraction of spin slip of the electron magnetic moment. �⃗�𝑒, electric magnetic 

moment. 𝜇𝑛, nuclear magnetic moment. 

z
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Method 

The Frisch–Segrè experiment consists of two SG apparatuses separated by an IR chamber, which 

rotates �⃗�𝑒  using an approximate quadrupole magnetic field, as shown in Figure 1. Potassium 

atoms thermally effused from an oven enter the first SG apparatus, where they are split into up 

and down branches. The CQD branching condition states that if �⃗�𝑒 is angularly closer (farther) to 

the +𝑧 -axis than �⃗�𝑛 , �⃗�𝑒  is repelled by �⃗�𝑛  to collapse parallel (antiparallel) to the +𝑧 -axis. 

Therefore, the pre-collapse state of �⃗�𝑒  with a given �⃗�𝑛  determines the measurement outcome 

according to the relative polar orientations of �⃗�𝑒 and 𝜇𝑛: 

|𝜇𝑒©𝜇𝑛⟩ =
1 − sgn(𝜃𝑒 − 𝜃𝑛)

2
|+𝑧⟩ +

1 + sgn(𝜃𝑒 − 𝜃𝑛)

2
|−𝑧⟩, (1) 

where the prefix ©  indicates the co-quantum, sgn denotes the sign function, and 𝜃𝑒  and 𝜃𝑛 

designate the polar angles of �⃗�𝑒 and �⃗�𝑛 in spherical coordinates in ℝ3, respectively. We use |+𝑧⟩ 

and |−𝑧⟩ to denote the states where �⃗�𝑒 is aligned with +𝑧 or −𝑧, respectively. Upon selecting the 

|+𝑧⟩  branch from SG1, the associated co-quanta follow an anisotropic probability density 

function [9]: 

𝑝𝑛(𝜃𝑛, 𝜙𝑛) =
1 − cos 𝜃𝑛

4𝜋
. (2) 

 

At the entrance of the IR chamber, the initial state of �⃗�𝑒 is |+𝑧⟩ with (𝜃𝑒0, 𝜙𝑒0) = (0,0), where 

𝜃𝑒0 and 𝜙𝑒0 are the initial polar and azimuthal angles of �⃗�𝑒 in spherical coordinates in ℝ3. In 

contrast to conventional quantum mechanical descriptions [6], [7], CQD assumes that the angular 

distribution of the co-quanta is continuous. The initial polar and azimuthal angles (𝜃𝑛0, 𝜙𝑛0) of 

�⃗�𝑛 are sampled from Eq. (2) through the Monte Carlo method as follows: 

𝜃𝑛0 = 2 arcsin (𝜁1

1
4) , 𝜙

𝑛0
= 2𝜋𝜁2, (3) 

where 𝜁1 and 𝜁2 are uniformly distributed random numbers between 0 and 1. 

 

The IR chamber consists of a current-carrying wire along the 𝑥-axis and a remnant field �⃗⃗�𝑟 along 

the 𝑧-axis with a magnitude of 0.42 × 10−4 T. The magnetic field generated by the wire and the 

remnant field cancel at 𝑟null = (0,0, −𝑧𝑎)  of the coordinate system in Figure 1, forming an 
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approximate quadrupole field [13]. The field gradient is found from the wire current 𝐼 and the 

remnant field to be [5] 

𝐺 =
2𝜋

𝜇0𝐼
𝐵𝑟

2. (4) 

Let 𝑡  be the flight time of an atom traveling with velocity 𝑣  (800  m/s) and 𝑧𝑎  the vertical 

distance between the atomic beam and the wire (1.05 × 10−4 m). We set the time 𝑡 = 0 when 

the atom is at the origin of the coordinate. The quadrupole field �⃗⃗�𝑞 at 𝑟 = (0, 𝑣𝑡, 0) is given by 

�⃗⃗�𝑞 = (0, 𝐺𝑧𝑎, 𝐺𝑣𝑡).  

 

In addition to the external field, the torque-averaged nuclear magnetic field given below also acts 

on the electron [9]: 

�⃗⃗�𝑛 =
5𝜇0

16𝜋𝑅3
�⃗�𝑛, (5) 

where 𝜇0 is the vacuum permeability, 𝑅 = 2.75 × 10−10 m is the van der Waals radius of the 

potassium atom [14], and 𝜇𝑛 = 1.977 × 10−27  J/T is the magnitude of the nuclear magnetic 

moment. The total magnetic field experienced by �⃗�𝑒 is �⃗⃗� = �⃗⃗�𝑞 + �⃗⃗�𝑛 = (𝐵𝑥, 𝐵𝑦, 𝐵𝑧):  

𝐵𝑥 = 𝐵𝑛 sin 𝜃𝑛 cos 𝜙𝑛 , (6) 

𝐵𝑦 = 𝐺𝑧𝑎 + 𝐵𝑛 sin 𝜃𝑛 sin 𝜙𝑛 , (7) 

𝐵𝑧 = 𝐺𝑣𝑡 + 𝐵𝑛 cos 𝜃𝑛 . (8) 

 

The final orientation of �⃗�𝑒 at the output of the IR chamber is numerically calculated through the 

Schrödinger equation with a modified Hamiltonian to account for the contribution of �⃗�𝑛 . 

Because we have shown that the Schrödinger equation for electron spin can be derived from the 

Bloch equation [10], the Schrödinger equation is used here as a mathematical tool; a direct 

numerical solution to the Bloch equation is reported separately [13].  

 

The evolution of the state of the electron magnetic moment |𝜇𝑒⟩ = (
𝑐1

𝑐2
) =

(
cos(𝜃𝑒 2⁄ )

sin(𝜃𝑒 2⁄ ) exp(𝑖𝜙𝑒)
) is governed by the Schrödinger equation: 

𝑖ℏ
𝑑

𝑑𝑡
|𝜇𝑒⟩ = 𝐻|𝜇𝑒⟩, (9) 
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where 𝑐1 and 𝑐2 are the probability amplitudes of the |+𝑧⟩ and |−𝑧⟩ states, and the Hamiltonian 

is 

𝐻 = −
1

2
ℏ𝛾𝑒�⃗⃗� ∙ �⃗�. (10) 

Substituting the Pauli vector �⃗� yields 

𝐻 = −
1

2
ℏ𝛾𝑒 (

𝐵𝑧 𝐵𝑥 − 𝑖𝐵𝑦

𝐵𝑥 + 𝑖𝐵𝑦 −𝐵𝑧
) , (11) 

where 𝛾𝑒 = −1.761 × 1011 rad ∙ Hz/T is the gyromagnetic ratio of the electron. To simplify 

Eq. (9), we replace the time 𝑡 with dimensionless time 𝜏: 

𝜏 =
1

2
√𝛾𝑒𝐺𝑣 ∙ 𝑡 +

1

2
√

𝛾𝑒

𝐺𝑣
𝐵𝑛 cos 𝜃𝑛 . (12) 

 

We assume that 𝜃𝑛 ≈ 𝜃𝑛0 because the collapse of �⃗�𝑛 is too slow to occur during the flight time. 

The azimuthal angle evolves as 𝜙𝑛 = 𝑤𝑛𝜏 + 𝜙𝑛0, where the dimensionless Larmor frequency 𝑤𝑛 

is given by 

𝑤𝑛 = 2
𝛾𝑛𝐵𝑒

√𝛾𝑒𝐺𝑣
. (13) 

Here, 𝐵𝑒 is the magnitude of the torque-averaged electron magnetic field on the nucleus given 

below [9]: 

�⃗⃗�𝑒 =
5𝜇0

16𝜋𝑅3
�⃗�𝑒 (14) 

with 𝜇𝑒 = 9.285 × 10−24 J/T.  

 

To suppress high-frequency oscillations, Majorana defined the following transformation of 

variables [5]: 

(
𝑐1

𝑐2
) = (

𝑒−𝑖𝜏2
𝑓

𝑒+𝑖𝜏2
𝑔

) . (15) 

This transformation not only simplifies the mathematical derivation but also accelerates our 

numerical simulation substantially.  

 

Substituting Eqs. (11–15) into Eq. (9) yields 
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𝑑2𝑓

𝑑𝜏2
− 4𝑖 [𝜏 −

√𝑘1𝑤𝑛

4(√𝑘1 − 𝑖√𝑘0𝑒𝑖𝜙𝑛)
]

𝑑𝑓

𝑑𝜏
+ (𝑘0 + 𝑘1 + 2√𝑘0𝑘1 sin 𝜙𝑛)𝑓 = 0, (16) 

where adiabaticity parameters 𝑘0 and 𝑘1 are defined as  

𝑘0 =
𝑧𝑎

𝑣
𝛾𝑒𝐺, (17) 

𝑘1 = 𝛾𝑒

(𝐵𝑛 sin 𝜃𝑛0)2

𝐺𝑣
. (18) 

 

The initial conditions of Eq. (16) are 𝑓(−∞) = 1 and 𝑑𝑓(−∞) 𝑑𝜏⁄ = 0 [5]. For each sampled 

(𝜃𝑛0, 𝜙𝑛0), the numerical solution is conducted over a dimensionless time range −30 < 𝜏 ≤ 60. 

Since the variation of 𝑓 is negligible when the atom is far before the null point, we consider the 

initial conditions as 𝑓(−30) = 1 and 𝑑𝑓(−30) 𝑑𝜏⁄ = 0 in the numerical simulation.  

 

Majorana reasoned that because the 𝑧-component of the magnetic field is reversed along the 

flight path, the roles of 𝑓 and 𝑔 in the quantification of spin flip are reversed [5]; the justification 

that we found is the initial adiabatic flip when the atom passes above the wire [9], [13]. 

Therefore, we compute the final polar angle of �⃗�𝑒  using the final value of 𝑓  through |𝑓| =

sin(𝜃𝑒,𝑓 2⁄ ) [10], yielding 𝜃𝑒,𝑓 = 2 arcsin|𝑓|. Substituting the final polar angles 𝜃𝑒 and 𝜃𝑛 into 

Eq. (1) predicts the collapsed state measured by SG2. According to the branching condition, the 

final orientation of �⃗�𝑒 is 

𝜃𝑒,𝐷 = {
0    if 𝜃𝑒,𝑓 < 𝜃𝑛,0 

𝜋   if 𝜃𝑒,𝑓 > 𝜃𝑛,0
. (19) 

 

We sample 𝑁 = 2 × 104  sets of (𝜃𝑛0, 𝜙𝑛0)  and statistically calculate the fraction of �⃗�𝑒  that 

collapse to |+𝑧⟩. The fraction of spin flip is given by 

𝑊num =
1

𝑁
∑[𝜃𝑒,𝐷

𝑗
= 0]

𝑁

𝑗=1

. (20) 

The Iverson bracket takes on 1 when the statement inside the bracket is true and 0 otherwise. Our 

source code written in Mathematica is provided in   
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Appendix: Source code in Mathematica and online [15]. 

 

Results 

Figure 2 demonstrates the solutions of |𝑓(𝜏)|  versus 𝜏  with different wire currents for an 

example pair of (𝜃𝑛0, 𝜙𝑛0). The electron magnetic moment rotates its polar angle mostly near the 

quadrupole null point, and |𝑓(𝜏)| oscillates with a damping amplitude thereafter. The final value 

of |𝑓(+∞)| is estimated by averaging |𝑓(𝜏)| in the range 52 < 𝜏 ≤ 60. 

 

 

Figure 2. Examples of |𝑓(𝜏)|  versus 𝜏  with different wire currents 𝐼  but the same initial 

orientation (𝜃𝑛0, 𝜙𝑛0) = (6𝜋 7⁄ , 0). 

 

Two probability density functions for �⃗�𝑛  are considered: isotropic (𝑝𝑛, isotropic = 1 4𝜋⁄ ) and 

anisotropic (𝑝𝑛, anisotropic = (1 − cos 𝜃𝑛0) 4𝜋⁄ ). These results are compared with the Frisch–Segrè 

observation in Figure 3. The isotropic distribution results in a negative coefficient of 

determination 𝑅isotropic
2 = −0.26, indicating poor agreement, whereas the anisotropic distribution 
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shows a high coefficient of determination 𝑅anisotropic
2 = 0.95 . Similarly, the coefficient of 

determination for the closed-form analytical solution [9] is 𝑅analytical
2 = 0.96. 

 

Figure 3. Simulated and experimental results for the fraction of spin flip in the Frisch–Segrè 

experiment. Isotropic and anisotropic distributions of the nuclear magnetic moment yield the 

coefficients of determination of 𝑅isotropic
2 = −0.26  and 𝑅anisotropic

2 = 0.95 , respectively. The 

number of simulated atoms is 2 × 104, leading to error bars smaller than the size of the symbols. 

 

Discussion and conclusion 

The numerical model incorporates the CQD concept into the Schrödinger equation [9]. The co-

quantum 𝜇𝑛 remains continuous upon the collapse of �⃗�𝑒, rather than becoming quantized. In this 

simulation, we approximate the precession of �⃗�𝑛 with a constant Larmor frequency. Solving the 

Bloch equation with a variable Larmor frequency, which however is numerically stiff, has led to 

similar agreement with the experimental observation [13]. By contrast, Rabi's quantum 

mechanical formula based on a quantized isotropic distribution for the nuclear magnetic moment 

does not agree with the experimental observation [6], [9]. As shown in another paper, the 
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standard quantum mechanical treatment using the von Neuman equation does not yet match the 

experimental observation [16]. 

 

In conclusion, we demonstrate a numerical model for the multi-stage Stern–Gerlach experiment 

by Frisch and Segrè based on CQD. The collapse of electron magnetic moment in SG1 according 

to the CQD branching condition leads to the redistribution of the co-quantum. We apply the 

Monte Carlo method to sample the co-quantum. With a Hamiltonian modified with the torque-

averaged magnetic field from the co-quantum, we use the Schrödinger equation to model the 

evolution of the electron magnetic moment inside the IR chamber. Then, the branching condition 

is applied to SG2 to quantify the fraction of spin flip. Our numerical model closely predicts the 

observation of the Frisch–Segrè experiment with no free parameters. 
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Appendix: Source code in Mathematica 

IwireList = List[0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5];  (*current*) 

v = 800.; (*velocity*) 

m0 = N[4.*Pi*1*^-7, 16]; (*vacuum permeability*) 

R = 2.75*^-10; (*atom radium*) 

mun = 1.97723*^-27;  (*nuclear magnetic moment*) 

mue = 9.28*^-24; (*electron magnetic moment*) 

za = 1.05*^-4; (*distance between wire and atom beam*) 

Be = N[5 m0 mue/(16 Pi*R^3), 16]; (*magnetic field of mu_e*) 

Bn = N[5 m0 mun/(16 Pi*R^3), 16]; (*magnetic field of mu_n*) 

gammae = 1.76085963*^11; (*gyromagnetic ratio of electron*) 

gamman = 1.25*^7; (*gyromagnetic ratio of nuclei*) 

Br = 0.42*1.*^-4; (*remnant magnetic field*) 

tN = 2051; (*2051 time sequence; 20000 for plotting the smooth sequence*) 

pCQD4List = ConstantArray[0, 8]; (*accumulated flipped spins*) 

S = 2000; (*number of samplings*) 

numberOfNP = 1; n = 1; (*usually they are 1*) 

taumin = -30; (*dimensionless time start*) 

taumax = 60; (*dimensionless time end*) 

tauList =  taumin + Range[tN]/tN*(taumax - taumin); (*time sequence*) 

SEListManual = ConstantArray[0, {S, 8}]; (*initialize the spin flip*) 

fList = ConstantArray[0, {tN - 1, 8}]; (*initialize the time sequence*) 

Do[ 

sampleOrder = s; (*sample order, s from 1 to 2000*) 

w2plotMatrix = ConstantArray[0, {numberOfNP, 8}]; (*initial spin flip for one sampled atom*) 

length = (Range[numberOfNP])/numberOfNP; 

 

Do[len = length[[m]]; 

Do[Iwire = IwireList[[j]]; 

PflipCQD4 = 0; 

Do[thn = 2*ArcSin[(RandomReal[])^(1/4)];  

(*sample polar angle of the nuclear magnetic moment, the example is the anisotropic 

distribution*) 

phia = RandomReal[]*2 Pi; (*azimuthal angle mu_n*) 

G = 2 Pi (Br)^2/(m0* Iwire); (*G quadrupole gradient*) 

k0 = Abs[gammae]*za^2/v* G; (*k0*) 

k1 = Abs[gammae]*(Bn Sin[thn])^2/(G v); (*k1*) 

\[Alpha] =  1/2*Sqrt[Abs[gammae ] G v]; (*ratio between time and dimensionless time*) 

tNP = Bn Cos[thn]/(G v); (*time when atom reaches the null point*) 

fInitial = 1; (*initial condition*) 

DfInitial = 0; (*initial condition *) 

Do[ 

tau1 = tauList[[q]]; (*time step q*) 

tau2 = tauList[[q + 1]]; (*time step q+1*) 
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\[Omega]n =   Abs[gamman]*Be; (*precession frequency of mu_n*) 

wn = \[Omega]n /\[Alpha]; (*dimensionless precession frequency*) 

phin = wn*tau + phia; (*azimuthal angle of mu_n*) 

sparam1 = NDSolve[{ 

f1''[tau] == ((Sqrt[k1] wn / (I Sqrt[k1] + Sqrt[k0] Exp[I (phin)])) +  

4 I (tau)) f1'[tau] - (k1 + k0 + 2 Sqrt[k0 k1] Sin[phin]) f1[tau], 

f1[tau1] == fInitial, f1'[tau1] == DfInitial}, 

  f1, 

  {tau, tau1, tau2}, 

Method -> Automatic, 

PrecisionGoal -> 10, 

AccuracyGoal -> 10, InterpolationOrder -> All,  

WorkingPrecision -> MachinePrecision, MaxSteps -> Infinity]; (*Schrodinger equation*) 

fList[[q, j]] = Max[Abs@f1[tau1] /. sparam1]; (*time sequence at q’s step for j’s current*) 

fInitial = Max[f1[tau2] /. sparam1]; 

DfInitial = Max[f1'[tau2] /. sparam1], {q, 1, tN - 1}]; 

getFfinal =  Mean[fList[[tN - 187 ;; tN - 1, j]]]; (*average f*) 

thetaE = Re[2 ArcSin[getFfinal]]; (*calculate the polar angle of mu_n*) 

getCQDflipover = Evaluate[(Sign[thetaE - thn] + 1)/2]; (*branching condition Eq. (1)*) 

PflipCQD4 = getCQDflipover + PflipCQD4, {i, 1, n}]; 

pCQD4List[[j]] = PflipCQD4/n*100; (*probability in %*) 

, {j, 1, 8}]; 

w2plotMatrix[[m]] = pCQD4List, {m, 1, numberOfNP}]; 

fileOrder = 1; (*usually equals to 1*) 

SEListManual[[sampleOrder + 1, All]] = w2plotMatrix[[fileOrder]]; 

, {s, 0, S - 1} ] 

 

(*Plot*) 

SEresults =  

ListLogLinearPlot[Transpose@{IwireList, (Mean[SEListManual])},  

PlotLegends -> {"SE Results"}, PlotStyle -> Blue,  

PlotMarkers -> "O", Joined -> True]; 


