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The multi-stage Stern–Gerlach experiment conducted by Frisch and Segrè has been modeled
analytically using quantum mechanics by Majorana and revised by Rabi by including the hyperfine
interaction. However, the theoretical predictions do not match the experimental observation well.
Here, we numerically solve the standard quantum mechanical model, via the von Neumann equation,
that includes the hyperfine interaction for the time evolution of the spin. The outcome is compared
with the experimental observation and the predictions by Majorana, Rabi, and an alternative model
called co-quantum dynamics. Thus far, the coefficients of determination from the standard quantum
mechanical model, which does not use free parameters, are still below zero. Non-standard variants
that improve the match are explored for discussion.
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I. INTRODUCTION

The Stern–Gerlach (SG) experiment [1, 2] was an es-
sential observation in the early development of quantum
mechanics and is commonly used as a segue to modern
physics in most textbooks [3–5]. The SG observation was
later interpreted as proof of quantization of the electron
spin [6–8]. The idea of spin quantization can be more
rigorously understood via multi-stage SG thought exper-
iments [3]. The Frisch–Segrè (FS) experiment, conducted
in the same lab as the first Stern–Gerlach experiment,
was the first success reported [1, 9–11]. Their experiment
was suggested by Einstein [7, 11, 12] and studied analyti-
cally by Majorana [13] and later by Rabi [14]. Rabi added
the hyperfine interaction, which was neglected by Majo-
rana, to modify the Majorana formula but did not explic-
itly solve for the evolution of the spin. However, even the
improved theoretical prediction deviates from the exper-
imental observation. Here, we numerically simulate the
Frisch–Segrè experiment using a standard quantum me-
chanical model using the von Neumann equation with-
out tuning the hyperfine structure coefficient and com-
pare the outcome with the predictions by both Majorana
and Rabi as well as from an alternative model called co-
quantum dynamics (CQD) [15–17].

This paper is organized as follows. In Sec. II, we
present the experimental configuration used by Frisch
and Segrè to measure the fraction of electron spin flip. In
Sec. III, we introduce the von Neumann equation and the
Hamiltonian for the nuclear-electron spin system. Nu-
merical results for the time evolution of the spins and
the final electron spin flip probability are shown here. In

† These authors contributed equally.
∗ Corresponding email:lvw@caltech.edu

Sec. IV, we compare the numerical results with previous
solutions. Finally, Sec. V is left for conclusions. Non-
standard variants of the quantum mechanical model are
explored in the appendices to stimulate discussion.

II. DESCRIPTION OF THE FRISCH–SEGRÈ
EXPERIMENT

The schematic used in the Frisch–Segrè experiment [9]
is redrawn in Figure 1. There, magnetic regions 1 and
2 act as Stern–Gerlach apparatuses, SG1 and SG2, re-
spectively. In SG1, stable neutral potassium atoms (39K)
effused from the oven are spatially separated by the mag-
netic field gradient according to the orientation of their
electron magnetic moment µe. The magnetically shielded
space containing a current-carrying wire forms the inner
rotation (IR) chamber. The shielding reduces the fringe
fields from the SG magnets down to the remnant field
Br = 42 µT aligned with +ẑ. Inside the IR chamber,
the current-carrying wire placed at a vertical distance za
below the atomic beam path creates a cylindrically sym-
metric magnetic field. The total magnetic field in the IR
chamber equals the superposition of the remnant field
and the magnetic field created by the electric current Iw
flowing through the wire. After SG1, the atoms enter the
IR chamber; we approximate the motion to be rectilinear
and constant along the y axis. Along the beam path, the
magnetic field is given by

Bexact =
µ0Iwza

2π(y2 + z2a)
ey+

(
Br −

µ0Iwy

2π(y2 + z2a)

)
ez , (1)

where µ0 is the vacuum permeability; the trajectory of
the atom is expressed as y = vt, where v is the speed of
the atom and the time is set to t = 0 at the point on
the beam path closest to the wire. The right-handed and
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FIG. 1. Redrawn schematic of the original setup [9]. Heated
atoms in the oven effuse from a slit. First, the atoms enter
magnetic region 1, which acts as SG1. Then, the atoms en-
ter the magnetic shielding (i.e., the IR chamber) containing
a current-carrying wire W. Next, a slit selects one branch.
Magnetic region 2 acts as SG2. The hot wire is scanned ver-
tically to map the strength of the atomic beam along the z
axis. The microscope reads the position of the hot wire.

unitary vectors {ex, ey, ez} describe the directions of the
Cartesian system.

The magnetic field inside the IR chamber has a
current-dependent null point below the beam path at
coordinates (0, yNP,−za), with yNP = µ0Iw/2πBr. In the
vicinity of the null point, the magnetic field components
are approximately linear functions of the Cartesian co-
ordinates. Hence, the magnetic field is approximated
as a quadrupole magnetic field around the null point
[9, 13]. Along the beam path of atoms, the approximate
quadrupole field is [15, 17]

Bq =
2πB2

r

µ0Iw
za ey +

2πB2
r

µ0Iw
(y − yNP) ez . (2)

For the study of the time evolution of the atom inside
the IR chamber both of the fields, Bexact and Bq, are
considered below.

After the IR chamber, a slit transmits one branch of
electron spins polarized by SG1 and blocks the other
branch. In the forthcoming theoretical model, we track
only the transmitted branch with spin down at the en-
trance of the IR chamber and ignore the blocked branch.
The atoms that reach SG2 collapse to the eigenstates
for the second time and spatially separate owing to the
magnetic field gradient. The final distribution of atoms
is measured by scanning a hot wire along the z axis while
monitored by the microscope. The probability of flip is
then measured at different values of the electric current
Iw.

III. THEORETICAL DESCRIPTION

The time evolution of the noninteracting atoms in the
beam traveling through the IR chamber of the Frisch–
Segrè experiment is studied using standard quantum me-

chanics. We describe the quantum system using the den-
sity operator formalism since it embodies the statistical
interpretation of quantum mechanics and allows direct
simulation of mixed states [18, 19]. The time evolution
of the density operator ρ̂, specifying the properties of a
quantum ensemble of the system, is governed by the von
Neumann equation [18, 20, 21]:

∂ρ̂(t)

∂t
=

1

i~
[Ĥ(t), ρ̂(t)] , (3)

where Ĥ(t) is the Hamiltonian of the system and ~ is the
reduced Plank constant.

Let us consider the quantum system composed of the
4 2S1/2 valence electron and the nucleus of the 39K atom.
The interaction of the nuclear magnetic moment µn and
the electron magnetic moment µe with an external mag-
netic field B is described with the Hamiltonian

Ĥ = Ĥe + Ĥn + ĤHFS . (4)

First, the electron Zeeman term Ĥe describes the inter-
action between the electron magnetic moment and the
external magnetic field [22] via

Ĥe = −µ̂e ·B , (5)

where µ̂e is the quantum operator for µe. In 39K
atoms, µ̂e is only due to the 4s1 electron with the
spin angular momentum S = 1/2 because all other
electrons are paired and the net orbital angular mo-
mentum is zero. Thus, µ̂e = γeŜ, where γe =
−1.760 859 630 23(53)× 1011 rad/(s T) denotes the gyro-
magnetic ratio of the electron; the electron spin operator
Ŝ = ~

2 σ̂, with the Pauli vector σ̂ consisting of the Pauli
matrices {σx, σy, σz}. Substitutions yield

Ĥe = −γe
~
2
σ̂ ·B . (6)

In the 2-dimensional Hilbert space He = span (|S,ms〉),
withms = −S, . . . , S, the density operator of the electron
spin is represented as

ρ̂e =
∑
ms,m′

s

ρms,m′
s
|S,ms〉〈S,m′s| . (7)

The nuclear Zeeman Hamiltonian Ĥn describes the in-
teraction of the nuclear magnetic moment with the ex-
ternal magnetic field:

Ĥn = −µ̂n ·B , (8)

where µ̂n = γnÎ denotes the quantum operator for µn,
γn the nuclear gyromagnetic ratio, and Î the nuclear spin
quantum operator. For 39K, the nuclear spin I = 3/2 and
γn = 1.250 061 2(3)× 107 rad/(s T) [23]. Therefore, we

can write Î = ~
2 τ̂ , with τ̂ being the generalized Pauli

vector constructed with the generalized Pauli matrices
for spin 3/2, namely {τx, τy, τz}. Substitutions produce

Ĥn = −γn
~
2
τ̂ ·B . (9)
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In the 4-dimensional Hilbert space Hn = span (|I,mI〉)
with mI = −I, . . . , I, the density operator for the nuclear
spin is

ρ̂n =
∑
mI ,m′

I

ρmI ,m′
I
|I,mI〉〈I,m′I | . (10)

The interaction between the magnetic dipole moments
of the nucleus and the electron gives the hyperfine struc-
ture (HFS) term ĤHFS. In terms of the electron and nu-
clear spin operators, the Hamiltonian is written as

ĤHFS =
2πaHFS

~
Î · Ŝ , (11)

where aHFS reflects the coupling strength. For
39K, aHFS is set to the experimental value aexp =
230.859 860 1(3) MHz [23].

Therefore, the 8-dimensional Hilbert space for the
combined nuclear–electron spin system is H = Hn ⊗
He. The tensor product combines the bases into the
form |mI ,ms〉; where for simplicity of notation we have
dropped the S and I labels.

The terms of the nuclear–electron spin Hamiltonian
Ĥ = Ĥe + Ĥn + ĤHFS are expressed as [24, 25]

Ĥe = −γe
~
2
τ̂0 ⊗ (Bxσ̂x +Byσ̂y +Bzσ̂z)

= −γe
~
2
τ̂0 ⊗

(
Bz Bx − iBy

Bx + iBy −Bz

)
, (12)

Ĥn = −γn
~
2

(Bxτ̂x +By τ̂y +Bz τ̂z)⊗ σ̂0

= −γn
~
2


3Bz

√
3(Bx − iBy) 0 0√

3(Bx + iBy) Bz 2(Bx − iBy) 0

0 2(Bx + iBy) −Bz
√

3(Bx − iBy)

0 0
√

3(Bx + iBy) −3Bz

⊗ σ̂0 , (13)

ĤHFS =
π

2
~ aHFS(τ̂x ⊗ σ̂x + τ̂y ⊗ σ̂x + τ̂y ⊗ σ̂z) =

π

2
~ aHFS



3 0 0 0 0 0 0 0

0 −3 2
√

3 0 0 0 0 0

0 2
√

3 1 0 0 0 0 0
0 0 0 −1 4 0 0 0
0 0 0 4 −1 0 0 0

0 0 0 0 0 1 2
√

3 0

0 0 0 0 0 2
√

3 −3 0
0 0 0 0 0 0 0 3


, (14)

where σ̂0 and τ̂0 are the 2-dimensional and 4-dimensional
identity matrices, respectively. This Hamiltonian has
been validated numerically by comparing the eigenval-
ues with respect to the external field with the solutions
from the Breit–Rabi formula [26].

The overall density operator ρ̂ is expressed in the basis
{|mI ,ms〉} as

ρ̂ =

I∑
i,j=−I

S∑
k,l=−S

ρjlik |i, k〉〈j, l| . (15)

In the IR chamber, the external magnetic field either in
the exact (1) or the quadrupole form (2) is time depen-
dent. An exact closed-form analytical time-dependent
solution for the density operator cannot be obtained. For
the numerical solution of the time evolution, the von Neu-
mann equation (3) needs to be discretized. We use the

second-order Runge–Kutta method as follows [27]:

ρ̂(t+
∆t

2
) = ρ̂(t)− ∆t

2

i

~

[
Ĥ(t), ρ̂(t)

]
, (16a)

ρ̂(t+ ∆t) = ρ̂(t)−∆t
i

~

[
Ĥ(t+

∆t

2
), ρ̂(t+

∆t

2
)

]
,

(16b)

where ∆t is the temporal step size.

In order to solve the initial value problem, we first
define the initial density operator ρ̂(t0) at time t0, cor-
responding to the entrance of the IR chamber. Since
we track the branch with electron spin down (i.e.,

|ms = −1/2〉 and 〈Ŝz〉 = −~/2), the initial state for the
electronic component is

ρ̂e(t0) = ρ̂exact(t0) = |−1/2〉〈−1/2| =
(

0 0
0 1

)
. (17)
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The electron spin flips adiabatically near the wire
[9, 17] to spin up, yielding 〈Ŝz〉 = ~/2. Thereafter,
we numerically track the non-adiabatic flip due to the
null point by considering the quadrupole approximation
Bq shown in (2). Thus, we reset the initial state to
[13, 15, 17]

ρ̂e(t0) = ρ̂quad(t0) = |+1/2〉〈+1/2| =
(

1 0
0 0

)
. (18)

In contrast, the initial nuclear state is assumed to be
maximally mixed [14]:

ρ̂n(t0) =
1

4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (19)

Then, the initial density operator of the combined system
is assumed to be factorized as ρ̂(t0) = ρ̂n(t0)⊗ ρ̂e(t0).

Finally, we calculate the expectations of spin measure-
ments, for the electron and the nucleus, in the z direction
as

〈Ŝz〉 =
~
2
〈σ̂z〉 =

~
2

Tr(ρ̂(t) σ̂z) , (20a)

〈Îz〉 =
~
2
〈τ̂z〉 =

~
2

Tr(ρ̂(t) τ̂z) , (20b)

where Tr denotes the trace.
For the computation of the electron spin flip proba-

bility, let us introduce the projector operators M+ =
|+1/2〉〈+1/2| and M− = |−1/2〉〈−1/2|, such that they are
orthogonal and span the Hilbert space for the electron
spin He. The operators M+ and M− correspond to pro-
jective measurements of electron spin +~/2 and −~/2, re-
spectively. The flip probability of spin after exiting the
IR chamber at time tend is

p = Tr (ρ̂(tend)M+). (21)

A. Excluding hyperfine interaction

We first consider the case Ĥ = Ĥe by neglecting the nu-
clear component. The analytical asymptotic solution for
this model was found using the quadrupole field approxi-
mation by Majorana [13] and applied to the Frisch–Segrè
experiment [9]. Here, a numerical solution is provided for
both the exact and quadrupole fields.

Figure 2a shows the evolution of 〈Ŝz〉 over the flight
of the atom in the IR chamber. The expectation towards
the end of the IR chamber oscillates with time. As the
magnetic field strength increases, the oscillation decays.
Hence, we average the expectation over the final one-
eighth of the flight before the exit of the IR chamber.

Figure 2b shows the flip probability of the electron spin
observed in SG2 as spin up, computed using (21), for the
exact and quadrupole fields at different wire currents.

(a)

(b)

FIG. 2. (a) Time evolution of 〈Ŝz〉 for the exact and
quadrupole fields at wire current Iw = 0.1 A. (b) Flip proba-
bility of the electron spin versus the wire current. The numeri-
cal simulations match with Majorana’s prediction [13] but not
with the experimental observation [9].

The numerical prediction using the quadrupole approx-
imation agrees exactly with Majorana’s analytical pre-
diction [13] and closely with the numerical prediction us-
ing the exact field. The coefficients of determination R2

between the numerical predictions and the experimental
data are, however, −18.9 and −19.9 for the exact and
quadrupole fields, respectively. Therefore, this model
does not predict the experimental observation well.

B. Including hyperfine interaction

We now consider Ĥ as in (4) by including the hyper-
fine interaction. This model is implemented similarly as
above. Figure 3a illustrates 〈Ŝz〉 and 〈Îz〉 versus the
flight time of the atoms in the IR chamber for the exact
field at Iw = 0.1 A.
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(a)

(b)

FIG. 3. (a) Evolution of 〈Ŝz〉 and 〈Îz〉 for the exact field
over the flight duration within the IR chamber at Iw = 0.1 A.
(b) Flip probability of the electron spin for the exact and
quadrupole fields when the hyperfine interaction is included.
The numerical predictions do not match with the experi-
mental observation nor with Rabi’s and CQD’s predictions
[14, 15].

Figure 3b shows the flip probabilities predicted by the
numerical solution in comparison to Rabi’s analytical so-
lution [14] and the experimental observation [9]. The
coefficients of determination R2 of our model for the ex-
act and quadrupole fields in relation to the experimental
observation are −11.43 and −16.27, respectively; Rabi’s
prediction has an R2 = −0.02. Clearly, our standard
quantum mechanical model or Rabi’s solution, even if
the HFS is considered, does not predict the experimental
observation well.

IV. DISCUSSION

In the main text, we have only considered a maximally
mixed initial nuclear state as in (19), which is common
in the literature [14], and have used only the experimen-
tally measured value of aexp. In the appendices, we have
considered various other initial states (see Appendix A)
and other values (see Appendix B). Among all the cases,
the best match with the experimental observation has
R2 = 0.51 (see Appendix C and Table I) excluding re-
sults in Appendix D.

While one might question inaccuracies in the experi-
ment conducted in the 1930s, a possible reason for the
discrepancy is the deficiency of the models. The defi-
ciency of Majorana’s prediction is likely due to the lack
of hyperfine interaction, and the deficiency of Rabi’s pre-
diction might be caused by the approximations made
during his modification to the Majorana formula. With-
out such approximations, our numerical model that fol-
lows the standard quantum mechanical formalism should
reach a higher coefficient of determination (R2 ∼ 1) but
still does not accurately match the experimental observa-
tion. Surprisingly, recent “semi-classical” studies under
CQD [15–17] have been able to match the Frisch–Segrè
experimental observation well both analytically and nu-
merically without using free parameters.

V. CONCLUSIONS

Here, we model the Frisch–Segrè experiment [9] us-
ing a standard quantum mechanical model. However,
the model, which does not use free parameters, cannot
predict the experimental observation well. Because the
mismatch between the theory and the experiment could
be due to either the model or the experiment, further in-
vestigation of both would be fruitful. In the appendices,
non-standard variants of the quantum mechanical model
are explored to stimulate discussion.
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[28].
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Appendix A: Modified initial states

A recently developed theory called CQD [15] matches
the experiment well [9] and yields an anisotropic distri-
bution for the nuclear spin after SG1. Inspired by this
work, we explore various initial states for the nuclear spin
in addition to the maximally mixed state. We consider
pure nuclear initial states

|Ψn〉 = c1 |+3/2〉+c2 |+1/2〉+c3 |−1/2〉+c4 |−3/2〉 , (A1)

where for simplicity we constrain ci ∈ R, for i = 1, . . . , 4.
Then, the initial state of the compound nuclear–electron
spin system is

ρ̂pure = |Ψn〉〈Ψn| ⊗ ρ̂e(t0) . (A2)

Also, we consider a family of mixed nuclear initial states
with all off-diagonal elements set to zero. Thus, the ini-
tial state for the compound system reads

ρ̂mixed =

d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4

⊗ ρ̂e(t0) . (A3)

Some of the tested pure states include (c1, c2, c3, c4) ∝
(1, 1, 1, 1), (0, 1, 2, 3), (1, 0, 0, 1), (1, 0, 0,

√
2), and

(1, 0, 0,
√

3). Meanwhile, some of the tried mixed
states include (d1, d2, d3, d4) ∝ (1, 1, 1, 1), (0, 1, 2, 3),
(1, 0, 0, 1), (1, 0, 0, 2), and (1, 0, 0, 3).

Appendix B: Modified HFS coefficients

Up to now, we have used the experimentally measured
HFS coefficient value, aexp = 230.859 860 1(3) MHz [23],
which does not accurately predict the experimental ob-
servation by Frisch and Segrè. Here, we modify the hy-
perfine coefficient to improve the match.

One way to calculate the HFS coefficient is to use the
Fermi contact interaction as follows [22, 24, 29, 30]:

2π~ aHFS = −~2 2µ0

3
γeγn|ψ(0)|2 , (B1)

where ψ(r) denotes the wave function of the electron.
The wave function for the 4s1 electron in 39K does not
have an exact solution. However, various approximations
are available [15, 31, 32], yielding the following HFS co-
efficients:

a1 = −~µ0γeγn
4π2R3

≈ 355 kHz , (B2a)

a2 = −~8µ0γeγn
3π4R3

≈ 384 kHz , (B2b)

a3 = −~28.4µ0γeγn
6π2R3

≈ 6.72 MHz , (B2c)

FIG. 4. Flip probability of the electron spin versus the wire
current for both the exact and quadrupole fields. Only the
best matches of the theoretical predictions with the exper-
imental observation are plotted, and the corresponding pa-
rameters are included in Table I.

where R = 275 pm is the van der Waals radius for 39K.
Another set of values for aHFS are obtained on the basis
of an alternative averaging method [15]:

a4 = −~5µ0γeγn
32π2R3

≈ 222 kHz , (B3a)

a5 = −~2µ0γeγn
3π4R3

≈ 95.9 kHz , (B3b)

a6 = −~0.138µ0γeγn
2π2R3

≈ 98.0 kHz . (B3c)

All of these values along with the experimental value,
aexp, have been tried.

Appendix C: Selected outcomes

Table I and Figure 4 show the matches with the highest
R2 among the tested cases. Among all the initial density
matrices and the HFS coefficients considered, the combi-
nation of the maximally distributed pure initial nuclear
state and a2 matches the experiment the closest under
the exact field. Under the quadrupole field, the closest
match is from the combination of the anisotropic pure
initial nuclear state and a4.

Ideally, one should sample all feasible density matrices
for a 4-state spin system and try each case with experi-
mental and theoretical HFS coefficients along with other
possible values. However, even if the Frisch–Segrè data
can be matched for a specific initial state, one should still
explain how such a state can be obtained through SG1.
The cases considered in this paper are the simplest cases
one might think of, and the results do not match well
with the experimental observation.
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TABLE I. Coefficients of determination (R2) for the flip probabilities with respect to the experimental observation for various
HFS coefficients.

Initial state Magnetic field aexp a2 a4

ρ̂n(t0) = 1
4

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) exact −11.43 −2.47 −2.54

quadrupole −16.27 −0.55 −1.41

|Ψn(t0)〉 = 1
2

(
|+3/2〉+ |+1/2〉
+ |−1/2〉+ |−3/2〉

) exact −11.58 0.01 −5.99

quadrupole −16.70 −0.20 0.01

|Ψn(t0)〉 = 1√
14

(
0 |+3/2〉+ 1 |+1/2〉

+ 2 |−1/2〉+ 3 |−3/2〉
) exact −16.74 −0.76 −4.38

quadrupole −9.78 −0.54 0.51

Appendix D: Non-quantum mechanical squared
probabilities

Recent studies using CQD [15, 16] that match the
Frisch–Segrè experiment well derived the flip probability
equal to the square of the quantum mechanical counter-
part. The squaring is due to an anisotropic distribution
of the nuclear spin produced by the first Stern–Gerlach
stage [15]. Here, we translate the anisotropic distribution
to

ρ̂n(t0) =
1

3

(
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2

)
. (D1)

Further, we use a4 to be consistent with CQD and include
aexp for comparison. The numerical outcome matches
the experimental observation well, yielding coefficients
of determination of R2 = 0.81 for the exact field and
R2 = 0.73 for the quadrupole approximation, as shown
in Table II and Figure 5. Although this modification is
not justified under quantum mechanics, we report the
result to stimulate discussion.

TABLE II. Coefficients of determination (R2) for the arti-
ficially squared flip probabilities with respect to the experi-
mental observation for two different HFS coefficients.

Initial state Magnetic field aexp a4

ρ̂n(t0) = 1
3

(
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2

) exact −10.81 0.61

quadrupole −6.34 0.69

FIG. 5. Squared flip probability of the electron spin versus
the wire current for both the exact and quadrupole fields.
Only the theoretical predictions using a4 are plotted, and the
corresponding R2 values are listed in Table II.
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[9] R. Frisch and E. Segrè, Über die einstellung der rich-
tungsquantelung. II, Z. Phys. 80, 610 (1933).

[10] T. E. Phipps and O. Stern, über die Einstellung der Rich-
tungsquantelung, Zeitschrift für Physik 73, 185 (1932).

[11] B. Friedrich and H. Schmidt-Böcking, eds., Molecular
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