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We numerically study the spin flip in the Frisch–Segrè experiment, the first multi-stage
Stern–Gerlach experiment, within the context of the novel co-quantum dynamics theory. We model
the middle stage responsible for spin rotation by sampling the atoms with the Monte Carlo method
and solving the dynamics of the electron and nuclear magnetic moments numerically according to
the Bloch equation. Our results show that, without using any fitting parameters, the co-quantum
dynamics closely reproduces the experimental observation reported by Frisch and Segrè in 1933,
which has so far lacked theoretical predictions.
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I. INTRODUCTION

The Stern–Gerlach experiment was a crucial bench-
mark for the early development of quantum mechan-
ics [1, 2] and is still presented in introductory books
as evidence of quantization and the existence of the
electron spin angular momentum [3–7]. The so-called
Stern–Gerlach apparatus (SG) has been used to illustrate
the projection of the quantum wave function onto its
eigenstates along the quantization axis, which is given by
the direction of a strong inhomogeneous magnetic field.
Despite quantum mechanics being fundamental for ex-
plaining physical phenomena in almost any branch of
physics, there is no generally accepted theory for how
the wave function collapses [8–11].

Recently, a novel theory denoted co-quantum dynam-
ics (CQD) has been proposed to describe the evolution
and collapse of electron spins in alkali atoms interacting
with an external magnetic field, B [12, 13]. In CQD,
the electron magnetic moment µe is termed the princi-
pal quantum, whereas the nuclear magnetic moment µn
is termed the co-quantum. The evolution of both quanta
is modeled by the Bloch equation, and the collapse of
the principal quantum is treated by adding an induction
term. In addition to B, the magnetic field Bn generated
by the nuclear magnetic moment also acts upon µe; sim-
ilarly, the magnetic field Be generated by the electron
magnetic moment acts upon µn.

We apply CQD to model the multi-stage
Stern–Gerlach experiment conducted by R. Frisch
and E. Segrè [14]. Their apparatus is composed of
two Stern–Gerlach stages and an intervening stage
referred to as the inner rotation chamber. The middle
stage is characterized by the presence of a weak but
rapidly varying magnetic field that rotates the electron
magnetic moment. Despite attempts by E. Majorana
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[15] and I.I. Rabi [16–18], theoretical descriptions of this
experiment deviate from the Frisch–Segrè experimental
observation [13, 19]. To date, this divergence remains
unresolved by the standard concepts of quantum me-
chanics [19–21]. However, a closed-form approximation
of CQD matches the experimental data with a high
coefficient of determination without the use of fitting
parameters [13]. The approximation models the dynam-
ics by means of the Schrödinger equation coupled with
the CQD concept; this approach has been corroborated
numerically [22]. Here, we validate CQD by numerically
solving the Bloch equation instead to estimate the
fraction of spin flip in the Frisch–Segrè experiment and
achieve a high coefficient of determination.

The manuscript is organized as follows. The experi-
mental setup used by Frisch and Segrè is described in
Section II. The CQD theory for the experiment is de-
scribed in Section III. First, we introduce the equations
of motion for the electron and nuclear magnetic moments.
Second, we describe all stages in the Frisch–Segrè experi-
ment with emphasis on the intermediate stage. We com-
pare our numerical results with both the experimental
observation and the analytical solution reported previ-
ously [13]. In Section IV, we make final remarks about
our findings. In the Appendices, we mathematically de-
rive the approximated external magnetic field (Appendix
A) and summarize the closed-form analytical formula ob-
tained using CQD (Appendix B).

II. EXPERIMENT

A schematic of the multi-stage Stern–Gerlach appara-
tus, first constructed by T.E. Phipps and O. Stern [23]
and later improved by Frisch and Segrè [14], is shown
in Fig. 1. The experimental setup combines two mag-
net pairs, SG1 and SG2, which each act as a standard
Stern–Gerlach apparatus [2, 7, 24]. Between them, a
magnetically shielded inner rotation chamber contains a
homogeneous remnant magnetic field and a cylindrically
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FIG. 1. Schematic of the Frisch–Segrè apparatus as in [14].
The atomic beam from the oven is sent to SG1, whose inhomo-
geneous magnetic field points along the z-axis. The blue color
indicates the magnetic south pole, whereas the red color indi-
cates the magnetic north pole. Then, the atomic beam enters
the magnetically shielded inner rotation chamber containing
a remnant homogeneous magnetic field plus a magnetic field
generated by the electric current Iw flowing through a wire W
along the −x-direction. A slit post-selects one of the initially
aligned branches of the electron magnetic moment. Finally,
the atoms travel through SG2, and the fraction of spin flip is
measured using a hot wire.

symmetric magnetic field generated by a current-carrying
wire. The aim of the experiment is to observe spin flips in
ground-state alkali atoms due to non-adiabatic rotations
in the middle stage.

Alkali atoms are appealing for this experiment since
their ground state has a closed shell with only one valence
electron having an orbital angular momentum L = 0.
As a consequence, the total angular momentum for the
electron of the atom equals the spin S, with S = 1/2,
and the spin–orbit coupling vanishes. However, the elec-
tron–nuclear spin interaction, also called the hyperfine
interaction, arises from the coupling between the nuclear
magnetic moment µn and the magnetic field generated
by the electron magnetic moment µe, or equivalently vice
versa. The coupling strength depends on the relative ori-
entations of the magnetic moments, which are related to
the spin angular momenta as

µe = γeS, µn = γnI, (1)

where γe is the electron gyromagnetic ratio, γn is the
nuclear gyromagnetic ratio, and I is the nuclear spin.

A beam of alkali atoms is easily generated since alkali
metals have sufficient vapor pressure at temperatures of
only a few hundred degrees Celsius [25, 26]. Let us con-
sider the beam of atoms emerging from an oven and prop-
agating along the y direction as shown in Fig. 1. The
atomic beam first enters SG1, the strong magnetic field
(B0 ∼ 0.5 T) along the z-axis defines the quantization
axis. The initially isotropically oriented electron mag-
netic moments are quickly aligned parallel ↑ or antipar-
allel ↓ to the magnetic field direction. The gradient of the
magnetic field deflects the atoms into two branches. De-
spite no branch being physically selected before the inner
rotation chamber, in the following description, we track
only the branch with magnetic moments parallel to the
field. Figure 2 depicts the general behavior of electron

Oven

SG1 SG2
Inner rotation

chamber

FIG. 2. Illustration of three representative electron magnetic
moments of atoms traversing the Frisch–Segrè apparatus. At
the oven, the electron magnetic moments are randomly ori-
ented, SG1 aligns them to ↑ and ↓ with respect to the orien-
tation of the magnetic field. Both branches enter the inner
rotation chamber, where the varying magnetic field rotates
the electron magnetic moments. The upper branch is selected
using a slit, and the atomic beam is sent to SG2 where the
electron magnetic moments are again aligned. Finally, both
branches are measured to quantify the fraction of spin flip.

magnetic moments through the experimental setup.
Next, the split beam is sent into an inner rotation

chamber, which has an innermost diameter d. Inside the
innermost chamber, a weak remnant field Br = Br ẑ re-
mains despite shielding from the fringe fields of SG1 and
SG2. A wire with electric current Iw, flowing along the
−x direction, is placed at a vertical distance za below
the atomic beam. Figure 3a shows the main elements
and the coordinate system inside the chamber. For an
infinitely long straight wire, the magnetic field generated
by the current, ∀ y, z in the chamber, is given by

Bw =
µ0 Iw

2π [(z + za)2 + y2]
[(z + za) ŷ − y ẑ] , (2)

where µ0 denotes the vacuum permeability. Therefore,
the total field in the innermost shielded region is B =
Bw + Br. As illustrated in Fig. 3b, the magnetic field
cancels at the null point (NP), at position rNP = yNPŷ−
zaẑ, with

yNP =
µ0 Iw
2πBr

. (3)

In the region near the NP, a first-order Taylor expan-
sion around the point (yNP,−za) approximates the mag-
netic field as a quadrupole (see Appendix A for details):

B
NP−−−−−→

vicinity
Bq =

2πB2
r

µ0 Iw

[
(z + za)ŷ + (y − yNP)ẑ

]
. (4)

After the atom interacts with the field inside the inner
rotation chamber, the upper branch is selected using a
slit while the lower branch is blocked, as illustrated in
Fig. 2. Frisch and Segrè claimed that placing the slit
immediately after instead of before the inner rotation
chamber improved the beam quality [14].

Finally, the selected atomic branch enters SG2. This
second Stern–Gerlach stage again aligns the electron
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FIG. 3. Magnetic field inside the inner rotation chamber. The
beam propagates along the y-axis at constant speed v. The
top panel shows the Cartesian reference frame, the position
of the current-carrying wire (not drawn to scale), and the
contributions from the remnant field Br and the wire field
Bw to the total magnetic field at position r. The bottom
panel shows the field lines of the total magnetic field with a
null point (NP) below the beam path. In this example from
the Frisch–Segrè experiment [14], Br = 42 µT, Iw = 0.02 A,
and za = 105 µm.

magnetic moment of each atom in parallel ↑ and antipar-
allel ↓ directions. A hot wire records the final distribution
of the atoms, which is used to quantify the fraction of spin
flip of the electron magnetic moment resulting from the
inner rotation chamber. The experiment is repeated with
varying wire currents Iw, producing a fraction of spin flip
as a function of the current.

III. THEORY

Here, we use CQD [12, 13] to describe the multi-stage
Stern–Gerlach experiment by Frisch and Segrè. The for-
malism provides a mechanism of collapse of the electron
spin in atoms interacting with an external magnetic field
based on the combined dynamics of the electron and nu-
clear magnetic moments (1). The Bloch equation governs
the evolution of the magnetic moments in the inner ro-
tation chamber.

A. Magnetic moment evolution

The evolution of the magnetic moments in an external
magnetic field are described by the Bloch equation [27]:

dµ̂

dt
= γ µ̂×B , (5)

where µ̂ denotes the unit vector of the magnetic mo-
ment, γ is the gyromagnetic ratio, and B is the mag-
netic flux density. This equation governs an undamped
precession of the magnetic moment about the magnetic
field B. While usually considered a classical formalism,
the Bloch equation has been recently shown to yield the
space-independent von Neumann equation [12].

For the principal quantum µe and the co-quantum µn,
the Bloch equation (5) becomes

dµ̂e
dt

= γe µ̂e × (B + Bn) , (6)

dµ̂n
dt

= γn µ̂n × (B + Be) , (7)

where γe and γn denote the gyromagnetic ratios of the
electron and the nucleus, respectively, and B the external
magnetic field. CQD introduces the µe–µn interaction
via each other’s torque-averaged magnetic field, given by
[13]

Be =
5µ0 µe
16πR3

µ̂e = Be µ̂e , (8)

Bn =
5µ0 µn
16πR3

µ̂n = Bn µ̂n , (9)

where R is the van der Waals radius of the atom, and µe
and µn are the magnitudes of the magnetic moments for
the electron and the nucleus, respectively.

The orientations of the magnetic moments in R3 are
conveniently described using spherical coordinates. With
the polar and azimuthal angles, θe and φe for µe and θn
and φn for µn, we write the unit vectors as

µ̂e =

sin(θe) cos(φe)
sin(θe) sin(φe)

cos(θe)

 , (10)

µ̂n =

sin(θn) cos(φn)
sin(θn) sin(φn)

cos(θn)

 . (11)

Meanwhile, the external field is written as

B =

BxBy
Bz

 . (12)

Finally, substituting (8)–(12) into (6) and (7), we ob-
tain a set of differential equations determining the evo-
lution of the unit vectors of µe and µn:
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θ̇e = −γe [By cos(φe)−Bx sin(φe) +Bn sin(θn) sin(φn − φe)] , (13a)

φ̇e = −γe [Bz +Bn cos(θn)− cot(θe) [Bx cos(φe) +By sin(φe) +Bn sin(θn) cos(φe − φn)]] , (13b)

θ̇n = −γn [By cos(φn)−Bx sin(φn) +Be sin(θe) sin(φe − φn)] , (13c)

φ̇n = −γn [Bz +Be cos(θe)− cot(θn) [Bx cos(φn) +By sin(φn) +Be sin(θe) cos(φe − φn)]] . (13d)

Given the dynamical equations for the electron and
nuclear magnetic moments of a single atom, we model
their evolution in the inner rotation chamber of the
Frisch–Segrè experiment.

B. Multi-stage Stern–Gerlach experiment by
Frisch and Segrè

In the Frisch–Segrè experiment, neutral potassium-39
atoms (39K) with an electron configuration of [Ar] 4s1

were used. The valence electron in its ground state is
fully specified in the Russell-Saunders notation as 4 2S1/2.
Table I lists the values of the van der Waals radius, spins,
magnetic moments, and gyromagnetic ratios for the 39K
atom. Accordingly, we compute the magnitudes of the
magnetic fields generated by the electron and nuclear
magnetic moments from (8) and (9):

Be = 55.806 267 22(2) mT, (14a)

Bn = 11.8842(3) µT . (14b)

1. Oven

First, heating 39K atoms in an oven with a small open-
ing produces an effusive beam of non-interacting thermal
atoms. We define the y-axis along the beam as shown in
Fig. 1.

The initial orientations of both the electron and nu-
clear magnetic moments of a single traveling atom are

TABLE I. Values for potassium-39 [28–32].

39K
Property Value

Atom R 275 pm

V
a
le

n
ce

el
ec

tr
o
n S 1

2

µe 9.284 767 704 3(28)× 10−24 J/T

γe −1.760 859 630 23(53)× 1011 rad/(s T)

N
u
cl

eu
s I 3

2

µn 1.977 23(4)× 10−27 J/T

γn 1.250 061 2(3)× 107 rad/(s T)

isotropically distributed. Therefore, their angular prob-
ability density functions are respectively

pe,oven(θe,oven, φe,oven) =
1

4π
,

pn,oven(θn,oven, φn,oven) =
1

4π
.

To implement a Monte Carlo simulation, the polar and
azimuthal angles are numerically generated from inde-
pendent realizations of

θe,oven = 2 arcsin
(√

ζ1

)
, φe,oven = 2πζ2, (15)

θn,oven = 2 arcsin
(√

ζ3

)
, φn,oven = 2πζ4, (16)

with ζj , j = 1, . . . , 4, being random numbers uniformly
sampled from zero to one.

2. Stern–Gerlach apparatus 1

Emerging from the oven, the atoms enter a
Stern–Gerlach apparatus consisting of an inhomogeneous
magnetic field with a strong gradient along the z-axis, as
illustrated in Fig. 1. Usually, the amplitude of the mag-
netic field is B0 ∼ 0.5 T; thus, B0 > Be � Bn. For
such a strong field, µe and µn couple more strongly to
the external magnetic field than to each other, and can
be considered as independently precessing with Larmor
frequencies ωe and ωn, for electron and nuclear magnetic
moments, respectively, about the external field direction.
From the values in Table I, the ratio between the nu-
clear and electron Larmor frequencies ωn/ωe ≈ 7× 10−5.
In consequence, while the flight time guarantees the col-
lapse of the electron magnetic moment, it is too short for
the nuclear magnetic moment to collapse [13].

Therefore, the electron magnetic moments of the single
atoms, initially isotropically distributed, split into two
branches with well-defined opposite alignments along the
z-axis. We characterize the orientations of the aligned
µe by setting θe,0 = 0 and θe,0 = π in (10), respectively,
as illustrated in Fig. 2. Meanwhile, since µn does not
collapse, CQD assumes that θn does not vary significantly
during the flight. CQD shows that at the end of the
SG1 stage, the µn orientation in each of the branches
is redistributed into an anisotropic probability density
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function [13]:

pn(θn,0, φn,0) =

{
1
4π (1− cos(θn,0)) if θe,0 = 0,
1
4π (1 + cos(θn,0)) if θe,0 = π.

(17)

3. Inner rotation chamber

The inner rotation chamber consists of three hollow
iron shielding spheres. Without shielding, the fringe field
was ∼ 0.4 T; with shielding, the remnant field along the
+z-axis was measured as Br = 42 µT [14]. Inside the
chamber, an electric current Iw flowing through a wire
produces a spatially varying magnetic field (2), resulting
in the total field shown in Fig. 3b.

We select the branch of the atomic beam with µe
aligned to the +z-axis, i.e., θe,0 = 0, as shown in Fig. 2.
Therefore, the probability density function (17) becomes

pn(θn,0, φn,0) =
1

4π
(1− cos(θn,0)) . (18)

To continue the Monte Carlo simulation, the polar and
azimuthal angles (θn,0, φn,0) are sampled from the above
anisotropic probability density function:

θn,0 = 2 arcsin
(
ζ
1/4
1

)
, φn,0 = 2π ζ2, (19)

where ζ1 and ζ2 are two independent random numbers
sampled uniformly from zero to one.

Each atom in the beam propagates with velocity v =
v ŷ, and we approximate the motion to be rectilinear and
uniform such that its position on the propagation axis
is y = vt. The atom is simulated from −d/2 to d/2 as
shown in Fig. 3a. Here, v = 800 m/s and d = 16.3 mm
[14]. Therefore, the time in the inner rotation chamber
t ∈ [−10.2 µs, 10.2 µs]. The total magnetic field along the
y-axis varies according to

B =
µ0Iw

2π [z2a + (vt)2]
[za ŷ − vt ẑ] +Br ẑ . (20)

The wire is positioned along the x-axis at a distance za =
105 µm below the beam path. The electric current Iw
varies from 0.01 A to 0.5 A [14].

It is known that a time-dependent magnetic field can
rotate the magnetic moment of the electron [15, 18].
To determine whether the process is adiabatic or non-
adiabatic, we compute the so-called adiabaticity param-
eter, defined as the ratio between the absolute values of
the Larmor frequency ωe and the rotational speed of the
field in the yz plane ΩB [15]:

k =

∣∣∣∣ ωeΩB

∣∣∣∣ =

∣∣∣∣∣ γeB
d
dt [arctan (Bz/By)]

∣∣∣∣∣ . (21)

If ωe � ΩB (k � 1), µe is able to follow the changing
orientation of the magnetic field, and the rotation is said

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time  t ( s)

10 2

10 1
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FIG. 4. Adiabaticity parameter k along the beam path for
various electric currents. Adiabatic rotation of the electron
magnetic moment occurs around the peak (k � 1), whereas
non-adiabatic rotation happens around the trough (near the
null point tNP of the magnetic field). The vertical black
dashed line indicates the time when the atom is above the
wire (t = 0).

to be adiabatic. Otherwise, µe may be unable to follow
the changing orientation of the magnetic field; if so, the
rotation is said to be non-adiabatic.

From (20), the adiabaticity parameter becomes

k =

∣∣∣∣∣γeµ0Iw
2πzav

√
(vt)2 + z2a(

1− 4πBrvt

µ0Iw

)

×
[

1− 4πBrvt

µ0Iw
+

(
2πBr
µ0Iw

)2 (
(vt)2 + z2a

)]3/2∣∣∣∣∣. (22)

Figure 4 shows the variation of k around the center of
the cavity computed from (22) for a set of representative
electric currents Iw.

We note that in the vicinity of the wire position (t = 0)
and before the atoms reach the null point at time

tNP =
yNP

v
=

µ0 Iw
2πvBr

, (23)

the adiabaticity parameter is much greater than unity at
the peaks. Accordingly, as the z component of the mag-
netic field changes its orientation (see Fig. 3), the elec-
tron magnetic moment follows the varying B-field adia-
batically. Therefore, the electron magnetic moment flips
adiabatically, θe,0 : 0 7→ π, in this region. In comparison,
Majorana stated that the flip is due to the orientation
reversal of the quadrupole field along the flight path [15].
For simplicity, we ignore the contribution from the nu-
cleus (14b) to k because its much weaker field does not
significantly affect the magnitudes of the adiabatic peaks
in Fig. 4

Then, the electron magnetic moment is rotated non-
adiabatically around the corresponding trough in Fig. 4,
which is near the null point. We make use of the
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quadrupole approximation for the magnetic field to de-
scribe this effect near the null point, Bq in (4), rewritten
for the beam path as

Bx = 0 , (24a)

By =
2πB2

r

µ0Iw
za , (24b)

Bz =
2πB2

r

µ0Iw
v (t− tNP) . (24c)

The resulting system of coupled differential equations is
reduced to

θ̇e = −γe
[
By cos(φe)

+Bn sin(θn) sin(φn − φe)
]
, (25a)

φ̇e = −γe
[
Bz +Bn cos(θn)− cot(θe)

[
By sin(φe)

+Bn sin(θn) cos(φe − φn)
]]
, (25b)

θ̇n = 0 , (25c)

φ̇n = −γn
[
Bz +Be cos(θe)− cot(θn)

[
By sin(φn)

+Be sin(θe) cos(φe − φn)
]]
. (25d)

Note that we have imposed the condition θ̇n = 0 since the
postulates of the CQD theory require small variations of
the polar angle of the nuclear magnetic moment. This
condition corresponds to the selection rule for nuclear
spin transitions ∆mI = 0 [13, 33].

To solve the above differential equations, we sam-
ple the initial orientation of µn from (19) and sample
φe,0 uniformly, in a way similar to (15), while setting
θe,0 = π. The concurrence of two vastly different time
scales, ωn/ωe ≈ 7× 10−5, for the dynamics of µ̂e and µ̂n,
leads to stiffness prone to numerical instability [34, 35].
We chose the Radau methods [36, 37] implemented in
Julia [38, 39] to solve the differential equations (25) nu-
merically. Our source code is posted online [40]. An al-
ternative approach, to avoid the stiffness, approximates
the nuclear Larmor frequency as a constant and acceler-
ates the solution using a variable transformation [22]

Figure 5 shows the characteristic dynamics of θe inside
the inner rotation chamber for a representative set of
currents. To facilitate comparison, we introduce ∆t = t−
tNP, such that the time ∆t = 0 at the current-dependent
null point (23). The dynamics are characterized by an
oscillatory behavior; the polar angle θe varies rapidly in
the vicinity of the null point (∆t = 0) due to strong non-
adiabatic rotation. Then, the oscillations are damped
due to the increasing adiabaticity parameter for ∆t > 0.
However, since θe has not asymptotically converged to a
definite value, we numerically approximate its final value
θe,f by averaging the oscillations over the last 2 µs.

10 5 0 5 10 15 20
t tNP ( s)

0

4

2

3
4

e

0.01 A

0.1 A

0.5 A

FIG. 5. Dynamics of θe for different electric currents Iw. The
initial conditions are θe,0 = π and φe,0 = 0 for the electron
magnetic moment, whilst θn,0 = 5

8
π and φn,0 = 11

10
π for the

nuclear magnetic moment.

4. Stern–Gerlach apparatus 2

After traveling through the inner rotation chamber,
the atom enters the second Stern–Gerlach apparatus as
shown in Fig. 1. The strong magnetic field along the z-
axis realigns the electron magnetic moment. The final
orientation θe,f 7−→ θe,D follows the branching condition
postulated by the CQD theory [13]:

θe,D =

{
0 if θe,f < θn,0,

π if θe,f > θn,0.
(26)

Therefore, the measured polar angle θe,D takes on either
0 or π.

5. Fraction of spin flip

The spin flip corresponds to those atoms with θe,D = π,
as depicted in Fig. 2. We numerically solved the Bloch
equations for N = 15 000 atoms for each current Iw.
Thus, the fraction of spin flip, for a given Iw, is com-
puted using

Wnum =
1

N

N∑
i=1

[
θ
(i)
e,D = π

]
, (27)

where i denotes the ith-atom sampled and [P ] is the Iver-
son bracket, which is defined to take on the value 1 when
the statement P is true and 0 otherwise.

Figure 6 shows the resulting fraction of spin flip ob-
tained from the numerical simulation in comparison with
the experimental results reported by Frisch and Segrè
[14]. In addition, the closed-form analytical prediction
from the CQD theory is included (see Appendix B) [13].

The coefficient of determination for our numerical sim-
ulation is R2

num = 0.945, compared with R2
ana = 0.962
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FIG. 6. Fraction of spin flip for the multi-stage Stern–Gerlach
experiment by Frisch and Segrè. The red circles are the ex-
perimental data [14], the blue dashed line is the closed-form
analytical solution from CQD [13], and the gray crosses show
the numerical solution from CQD.

from the analytical solution [13]. The statistical errors
associated with the numerical results are smaller than the
symbol size in Fig. 6. These results show a close agree-
ment of CQD with the experimental data [14], which has
not yet been achieved using standard quantum mechan-
ical treatments [21].

IV. CONCLUSIONS

We used CQD to numerically model the Frisch–Segrè
experiment without using any fitting parameters. The
numerical problem is stiff because of the two vastly dif-
ferent characteristic time scales [13]. The solver of the
differential equations must be carefully chosen and val-
idated. We described all the stages of the experiment,
with emphasis on the inner rotation chamber. Using the
Monte Carlo method, we sampled the spatial orienta-
tions of the electron and nuclear magnetic moments of
the atoms in the atomic beam. Our findings show that
the fraction of spin flip obtained by means of CQD closely
reproduces the reported experimental results, with a co-
efficient of determination of R2

num = 0.945. The obtained
results have not been explained by standard quantum
mechanical approaches [21], despite attempts by Majo-
rana [15] and Rabi [16–18], whose theoretical formulae
deviate from the experimental results.

Hence, this work supports CQD as a model for both the
evolution and the collapse of the electron spin in atoms in
the presence of external magnetic fields. Some other re-
ported experiments involving multi-stage Stern–Gerlach
experiments [41, 42] could be explored using the present
formalism. Notwithstanding, we hope that this work will
encourage further experiments to verify CQD.
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SUPPLEMENTAL MATERIAL
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Appendix A: Approximation to quadrupole field

The total magnetic field inside the inner rotation cham-
ber, B = Bw + Br, can be approximated as an ideal
quadrupole field. The Taylor expansion of B in the yz
plane around the null point (yNP,−za) reads

B = B
∣∣∣
NP

+
∂B

∂y

∣∣∣
NP

(y − yNP) +
∂B

∂z

∣∣∣
NP

(z + za)

+
1

2

∂2B

∂y2

∣∣∣
NP

(y − yNP) +
1

2

∂2B

∂z2

∣∣∣
NP

(z + za)

+
∂2B

∂y∂z

∣∣∣
NP

(y − yNP)(z + za) + · · · . (A1)

Up to the first order, for the hyperbolic field approxima-
tion, the coefficients are

B
∣∣∣
NP

= 0 , (A2a)

∂B

∂y

∣∣∣
NP

=
2πB2

r

µ0Iw
ẑ , (A2b)

∂B

∂z

∣∣∣
NP

=
2πB2

r

µ0Iw
ŷ . (A2c)

Substituting (A2) into (A1), the quadrupole magnetic
field can be written as

Bq =
2πB2

r

µ0Iw
(z + za) ŷ +

2πB2
r

µ0Iw
(y − yNP) ẑ. (A3)

This corresponds to the magnetic field in (4).

Appendix B: Closed-form solution of the
co-quantum dynamics theory

Using the CQD theory, it is possible to derive a closed-
form formula for the probability of spin flip in the inner
rotation chamber in the presence of the quadrupole mag-
netic field and the nuclear magnetic moment as we de-
scribed for the experiment conducted by Frisch and Segrè
[13].

In terms of the parameters of the experiment, the frac-
tion of spin flip, shown as the blue dashed line in Fig. 6,
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is given by

Wana(Iw) = exp

−
√(

cr0
Iw

)2

+ c2rs − crrI3w

 , (B1)

where

cr0 = |γe|
2π2z2a
µ0v

(Br +Bn cos(〈θn〉))2 , (B2a)

crs = |γe|
πza
v
Bn sin(〈θn〉), (B2b)

crr =
µ3
0γ

2
eγn

32πv3
Be (Bn sin(〈θn〉))5

(Br +Bn cos(〈θn〉))6
. (B2c)

The coefficients represent three physical effects identified
in the solution, i.e., null-point rotation, rotation satura-
tion, and resonant rotation, respectively. The mean polar
angle of the nuclear magnetic moment is computed from
the probability density function (18) as follows:

〈θn〉 =

∫
dθn dφn sin(θn)pn(θn, φn) =

5

8
π. (B3)
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