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Tumours consist of heterogeneous populations of cancer cells 
that have distinct genetic and phenotypic profiles. The het-
erogeneity within a tumour, namely intratumoral heterogene-

ity, has become a great challenge for effective cancer therapy due to 
the differential response of cells in a tumour1. It exists among the 
hallmarks of cancer, which include acquired cell motility that leads 
to metastasis, elevated angiogenic potential that leads to angiogen-
esis and altered cellular metabolism2. It is well known that cancer 
cells have significantly altered metabolic profiles compared with 
their normal cellular counterparts and many emerging treatment 
modalities target the cellular metabolism of a tumour3. Assessing 
the extent of intratumoral metabolic heterogeneity would greatly 
contribute to our understanding of the effect of metabolic hetero-
geneity on tumour growth, invasion and drug resistance4. It will 
also help design effective and personalized treatment strategies by 
predicting sensitivity or resistance. Although advances in genome 
sequencing and RNA analysis have revealed intratumoral metabolic 
heterogeneity at the genetic level5, little is known about the hetero-
geneous metabolic phenotypes.

With greatly improved biomedical imaging tools, the pheno-
typic landscape of intratumoral metabolic heterogeneity can now 
be studied directly on bulk populations of cells6. Unfortunately, the 
limitations of the current methodology have prevented such studies 
on a single-cell level. Metabolic heterogeneity can be imaged and 
estimated by positron emission tomography in vivo in humans7. 
However, the spatial resolution of positron emission tomography  
is too poor to make any wider inferences8. Fluorescence-based 
methods have also been used but the required labelling may per-
turb the original microenvironments of tumour cells9,10. Optical 

imaging techniques based on endogenous contrasts, such as nico-
tinamide adenine dinucleotide and flavin adenine dinucleotide, 
can assess the metabolic states of single cells without labelling11. 
However, these techniques cannot provide absolute metabolic 
measurements, which is not sufficient to study intratumoral meta-
bolic heterogeneity12,13.

The oxygen consumption rate (OCR) of a cell is directly 
related to its metabolism13. The distribution of the single-cell 
OCRs within a tumour is an important gauge of metabolic het-
erogeneity. Extracellular flux analysis with commercially avail-
able Seahorse XF Analyzers (Seahorse Bioscience) is the most 
popular method for high-throughput OCR measurement and 
has provided valuable insights on the metabolic states of living  
cells14. However, it is performed on bulk populations of cells 
(~5,000), thus providing little information on cell-to-cell meta-
bolic heterogeneity. To accurately measure single-cell OCRs, 
each cell must be sealed into a small oxygen-diffusion-limited 
environment where the temporal change of oxygen content can 
be monitored. To create such an environment, microwell arrays 
are usually designed to trap a single cell in each microwell15. 
Single-cell OCR measurements have previously been performed 
by electrical and fluorescent methods, which require microscale 
oxygen sensors to monitor the change in oxygen content16,17.  
To perform single-cell OCR measurements on a large population 
of cells with these methods requires embedding a massive array 
of microscale oxygen sensors into the microwell array, mak-
ing it extremely challenging to fabricate and use. Moreover, the 
embedded microscale oxygen sensors may adversely affect the 
normal metabolism of cells, rendering the OCR measurement  
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inaccurate. Absorption spectroscopy with widely available plate 
readers may also be used. However, the strong scattering of 
the cells and the large volume of microwells in plates prevent 
it from accurately measuring the single-cell OCR. Limited by 
these issues, single-cell OCR measurement has been accom-
plished with a capability of only about 30 cells18. However, to 
obtain statistically sound data and assess the entire spectrum 
of intratumoral metabolic heterogeneity, single-cell OCRs of a 
large number of cells need to be measured simultaneously with-
out altering the metabolism of the cells. New high-throughput 
techniques for assessing intratumoral metabolic heterogeneity in 
large populations of cells are needed to understand the effect of 
intratumoral heterogeneity on the response of tumours to thera-
pies and to develop new targeted therapies.

With 100% relative sensitivity to optical absorption (that is, a 
given percentage change in the optical absorption coefficient yields 
the same percentage change in the photoacoustic amplitude), pho-
toacoustic imaging can provide anatomical, functional, molecular, 
mechanical and metabolic information about biological tissues19–23. 
Optical-resolution photoacoustic microscopy (OR-PAM), the major 
microscopic implementation of photoacoustic imaging, achieves 
diffraction-limited lateral resolution, which is sufficient for single 
cell imaging24. By employing two excitation wavelengths, photo-
acoustic imaging is the most sensitive technology to measure the 
oxygen saturation of haemoglobin (sO2) in blood25. Furthermore, 
by temporally monitoring sO2, photoacoustic imaging can detect 
changes in the oxygen content of blood and quantify oxygen metab-
olism without labelling26. Here, we developed single-cell metabolic 
photoacoustic microscopy (SCM-PAM) by combining a high-
density microwell array with wide-field fast-scanning functional 
OR-PAM. SCM-PAM provides label-free, high-throughput, single-
cell OCR measurements for a large population of cells. Each target 
cell is trapped in a microwell that constitutes a small oxygen-diffu-
sion-limited environment. By using haemoglobin as both an oxygen 
supplier and sensor, SCM-PAM continuously monitors the sO2 in 
each microwell to detect changes in oxygen content and quantify 
the OCR of each target cell. With the ability to fast-scan over a wide 
field of view, SCM-PAM can monitor thousands of microwells, thus 
achieving label-free, high-throughput, single-cell OCR measure-
ments for a large population of cells.

Results
SCM-PAM of single-cell trapping and oxygen sealing in a high-
density microwell array. The system schematic of SCM-PAM 
is shown in Fig. 1a (see Methods). In brief, the laser beams are 
focused on the high-density microwell array and the generated 
photoacoustic signals are detected by an ultrasonic transducer. 
By recording the time course of the photoacoustic signal from 
each laser pulse, a one-dimensional photoacoustic image (A-line) 
is acquired. Cross-sectional (B-scans) and volumetric images 
(C-scans) can be obtained by linear and raster motor scanning, 
respectively. To provide comprehensive single-cell metabolic 
information, we operate SCM-PAM in two modes, high-resolu-
tion mode and high-throughput mode. In the high-resolution 
mode (Fig. 1b), the microwell array is placed at the optical and 
acoustic focal plane of the SCM-PAM. With a scanning step 
size of 1.25 μm, a photoacoustic image with a field of view of 
1 mm × 1 mm (corresponding to 100 microwells) is acquired by 
SCM-PAM in 400 s. In this mode, we achieve optical-diffraction-
limited lateral resolution, which is 2.71 μm for the current system 
(see Methods and Supplementary Fig. 1). Multiple parameters, 
including the cell size and the well-filling ratio, can be quanti-
fied in the high-resolution mode. In the high-throughput mode 
(Fig. 1c), the laser beam is slightly defocused so that the laser 
spot size on the microwell array is 10 μm. A photoacoustic image 
with a field of view of 7.2 mm × 7.2 mm (corresponding to 3,600 
microwells) is then acquired by SCM-PAM with a scanning step 
size of 20 μm. Each image takes 720 s to acquire in high-through-
put mode. In this mode, four spots in each microwell are sampled 
to provide accurate measurement of sO2 in the microwell. The 
throughput can be further improved by sampling only one spot 
in each microwell at the expense of sO2-measurement accuracy 
in the microwell.

We first imaged the high-density microwell array with the 
SCM-PAM in high-resolution mode. Because the aluminium 
layer generates strong photoacoustic signals, each microwell can 
be clearly identified in the photoacoustic images as a negative 
contrast (Fig. 2a). The microwell diameters estimated from the 
photoacoustic images were approximately 40 μm, which agreed 
well with the values set during fabrication. To test the single-cell 
trapping efficiency of the microwell array, we imaged it loaded 
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Fig. 1 | System schematic and working modes of Scm-PAm. a, System schematic of SCM-PAM. b, High-resolution mode of SCM-PAM with optical-
diffraction-limited lateral resolution. c, High-throughput mode of SCM-PAM with a single-cell metabolism measurement throughput of about 3,000 cells 
over 15 min.

NATuRe BIomedIcAL eNgINeeRINg | VOL 3 | MAY 2019 | 381–391 | www.nature.com/natbiomedeng382

http://www.nature.com/natbiomedeng


ArticlesNature BIomedIcal eNgINeerINg

with B16 melanoma cells. Individual B16 cells were clearly identi-
fied in the microwells (Fig. 2b). By optimizing the cell-trapping 
procedure, we achieved a cell-trapping efficiency of 73%. We then 
imaged the microwell array loaded with fully oxygenated blood 
(sO2 = 100%) and fully deoxygenated blood (sO2 = 0%). The sO2 
maps of the high-density microwell arrays were obtained by 
employing two wavelengths (532 and 559 nm) for photoacoustic 
excitation (Fig. 2c,d). The sO2 values were measured accurately 

and the microwells were clearly distinguished from the back-
ground based on the sO2 values.

To ensure that the OCR for each individual cell was mea-
sured accurately, we verified the oxygen sealing of the microwell 
array. We first studied the oxygen diffusion between the blood in 
the microwells and the outside air by monitoring the sO2 in the 
microwells. The array was loaded with blood with sO2 values of 
0, 25, 50, 75 and 100%, and the sO2 values in the microwells were 
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Fig. 2 | Scm-PAm of single-cell trapping and oxygen sealing in a high-density microwell array. a, SCM-PAM of a microwell array without loading. Each 
well can be clearly identified. b, SCM-PAM of a microwell array loaded with a single B16 cell per well. c, SCM-PAM of a microwell array loaded with 
fully oxygenated blood. d, SCM-PAM of a microwell array loaded with fully deoxygenated blood. e, SCM-PAM of a microwell array loaded with blood 
immediately after heating select columns. f, SCM-PAM of the microwell array loaded with blood 300 min after heating select columns. H, columns 
with heating; N, columns without heating. g, Oxygen sealing of an array from the outside air with various initial sO2 values. The sO2 of the blood in the 
microwells remained unchanged during 300 min of monitoring, showing that the microwell array was fully sealed and there was no oxygen diffusion 
between the microwells and the outside air (n = 3 groups; the error bars show the s.d.). h, Oxygen sealing of an array between microwells. The sO2 of the 
blood in the microwells remained unchanged during 300 min of monitoring after heating select columns, showing that the array was fully sealed and there 
was no oxygen diffusion between the microwells (n = 3 groups; the error bars show the s.d.).
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monitored for 300 min, which is 20× longer than the 15 min time 
interval between two sO2 measurements in later experiments.  
The sO2 remained unchanged for 300 min during the imaging 
(Fig. 2g), showing that the microwells were fully sealed.

To avoid crosstalk between single-cell OCR measurements of 
adjacent microwells, we then tested for oxygen diffusion between 
microwells. First, we induced differences in adjacent microwells by 
selectively heating the microwells, as a change in temperature can 
shift the oxygen–haemoglobin dissociation curve and thus change 
the sO2 in the microwells. The baseline sO2 of the blood loaded in 
the array was approximately 60%, the value at which a small shift of 
the oxygen–haemoglobin dissociation curve can yield a relatively 
large change in sO2. Every other microwell column was then heated 
by scanning a continuous-wave laser (532 nm wavelength) along the 

column. During heating, the maximum photoacoustic amplitude 
increase at 532 nm was about 8.5%, corresponding to a temperature 
rise of 1.9 °C. To ensure that only the blood in the microwells was 
heated, the continuous-wave laser spot size was 15 μm and the scan-
ning step size was 80 μm. The laser spot size was smaller than the 
microwell diameter of 40 µm and the scanning step size matched 
the spacing between microwells. After heating, the array was sealed 
immediately with silicone oil and the sO2 in the microwells was 
monitored for 300 min (Fig. 2e,f). At the beginning of the monitor-
ing period, an average decrease of 12% in sO2 was observed, which 
was due to heating. During the 300 min of monitoring, the sO2 in 
microwells with and without heating remained unchanged, demon-
strating that there was no oxygen diffusion between the microwells 
in the high-density microwell array (Fig. 2h).
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Fig. 3 | Scm-PAm of cellular metabolic heterogeneity in cultured cells. a–d, SCM-PAM of single-cell OCRs of cultured RAW264.7 cells. a, SCM-PAM 
of sO2 changes in the microwells measured in high-resolution mode. b, Oxygen consumption curves of 92 RAW264.7 cells measured by SCM-PAM 
in high-resolution mode. c, SCM-PAM of sO2 changes in the microwells in high-throughput mode. d, Oxygen consumption curves of 2,746 RAW264.7 
cells measured by SCM-PAM in high-throughput mode. e–h, SCM-PAM of single-cell OCRs of cultured A549 cells. e, SCM-PAM of sO2 changes in the 
microwells measured in high-resolution mode. f, Oxygen consumption curves of 86 A549 cells measured by SCM-PAM in high-resolution mode. g, SCM-
PAM of sO2 changes in the microwells in high-throughput mode. h, Oxygen consumption curves of 2,761 A549 cells measured by SCM-PAM in high-
throughput mode. i, Single-cell OCR distribution of the two cell lines, measured by SCM-PAM in high-throughput mode. b,d,f,h, Each data point represents 
the change in oxygen content in a single microwell at a measurement time point. The lines connect the data points at different measurement time points in 
the same microwell and are guides to allow the visualization of the changes in oxygen content.

NATuRe BIomedIcAL eNgINeeRINg | VOL 3 | MAY 2019 | 381–391 | www.nature.com/natbiomedeng384

http://www.nature.com/natbiomedeng


ArticlesNature BIomedIcal eNgINeerINg

SCM-PAM of cellular metabolic heterogeneity in cultured cells. 
To validate the basic ability to image cellular metabolic heterogene-
ity, we first applied SCM-PAM to image cultured normal and cancer 
cells. Two cell lines, RAW264.7 murine macrophages (a normal cell 
line) and A549 human epithelial lung cancer cells, were used. The 
single-cell OCRs of RAW264.7 cells were first measured in high-
resolution mode (Fig. 3a). Of 100 microwells, 92 were filled with a 
single RAW264.7 cell per well. The sO2 in each microwell was mon-
itored for 45 min to measure the oxygen consumed by individual 
RAW264.7 cells (see Methods and Fig. 3b). Based on the oxygen con-
sumed in 45 min, the OCR of each cell was calculated. The average 
single-cell OCR of the 92 RAW264.7 cells was 0.84 ± 0.08 fmol min−1. 
We then switched to high-throughput mode and monitored the  
sO2 in 3,600 microwells. Among the 3,600 microwells, 2,746 
showed significant changes in sO2 within the 45 min of monitoring  
(Fig. 3c), indicating that each of these microwells was loaded with a 
single living RAW264.7 cell. For the remaining microwells, it could 

be that RAW264.7 cells were either not loaded or dead. The oxy-
gen consumed in each microwell was calculated based on the sO2 
change (Fig. 3d) and the single-cell OCRs of the 2,746 RAW264.7 
cells were calculated accordingly. The average single-cell OCR of 
the 2,746 RAW264.7 cells was 0.81 ± 0.11 fmol min−1. Similarly, the 
single-cell OCRs of A549 cells were first measured in high-resolu-
tion mode (Fig. 3e). Of 100 microwells, 86 were filled with a single 
A549 cell. As before, the sO2 in each microwell was monitored for 
45 min and the consumed oxygen was calculated (see Methods and 
Fig. 3f). The OCR of each cell was then calculated based on the 
oxygen consumed and the average single-cell OCR of the 86 A549 
cells was 1.86 ± 0.43 fmol min−1. Among the 3,600 microwells, 2,761 
showed significant changes in sO2 within the 45 min of monitoring 
in high-throughput mode (Fig. 3g), indicating that a single A549 
cell was loaded in each of these wells. The oxygen consumed in  
each microwell was calculated based on the sO2 change (Fig. 3h) 
and the OCRs of the 2,761 A549 cells were calculated accordingly. 
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Fig. 4 | Scm-PAm of intratumoral metabolic heterogeneity in a breast cancer patient. a–d, Single-cell OCRs of normal breast tissue cells measured by 
SCM-PAM. a, SCM-PAM of sO2 changes in the microwells in high-resolution mode. b, Oxygen consumption curves of 87 normal cells measured by SCM-
PAM in high-resolution mode. c, SCM-PAM of sO2 changes in the microwells in high-throughput mode. d, Oxygen consumption curves of 2,438 normal 
cells measured by SCM-PAM in high-throughput mode. e–h, Single-cell OCRs of cancerous breast tissue cells measured by SCM-PAM. e, SCM-PAM of 
sO2 changes in the microwells in high-resolution mode. f, Oxygen consumption curves of 93 cancer cells measured by SCM-PAM in high-resolution mode. 
g, SCM-PAM of sO2 changes in the microwells in high-throughput mode. h, Oxygen consumption curves of 2,463 cancer cells measured by SCM-PAM 
in high-throughput mode. i, Single-cell OCR distribution of normal and cancer cells from the patient measured, by SCM-PAM in high-throughput mode. 
b,d,f,h, Each data point represents the change in oxygen content in a single microwell at a measurement time point. The lines connect the data points at 
different measurement time points in the same microwell and are guides to allow the visualization of the change in oxygen content.
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The average single-cell OCR was 1.82 ± 0.47 fmol min−1. To show the 
cellular metabolic heterogeneity, the distributions of the single-cell 
OCRs of the above two cell lines are shown in a histogram (Fig. 3i). 
The cancer cell line showed a broader and more irregular distribution 
of single-cell OCRs, indicating a higher level of cellular metabolic 
heterogeneity compared with the normal cell line. The initial results 
in cultured cells demonstrate the ability of SCM-PAM to perform 
label-free, high-throughput, single-cell OCR measurements and 
show its potential for imaging intratumoral metabolic heterogeneity.

To fully demonstrate the robustness and specificity of this 
technique, we applied SCM-PAM to measure the single-cell OCR 
changes of A549 cells treated with different metabolic inhibitors, 
including oligomycin (12 μM), an inhibitor of ATP synthase in 
mitochondria27, and rotenone (2 μM) and antimycin (2 μM), both 
inhibitors of the electron transport chain in mitochondria27. The sin-
gle-cell OCR distributions for A549 cells in the presence or absence 
of the metabolic inhibitors were measured. In all three cases, the 
metabolic inhibitors significantly decreased the average single-cell 
OCRs (Supplementary Fig. 3). This pharmacological intervention 
fully demonstrated the robustness and specificity of SCM-PAM in 
label-free, high-throughput measurement of single-cell OCRs.

SCM-PAM of intratumoral metabolic heterogeneity in breast 
cancer patients. To fully demonstrate its potential in imaging intra-
tumoral metabolic heterogeneity, we applied SCM-PAM to measure 
the single-cell OCR distributions of normal and cancerous breast 
tissues from three breast cancer patients. After surgical excision, the 
normal and cancerous breast tissues were dissociated into single-
cell suspensions and placed into the device. The single-cell OCRs 
of normal breast tissue cells from patients were first measured in 
high-resolution mode (Fig. 4a). Of 100 microwells, 87 were each 
filled with a single cell. We monitored the sO2 in each microwell for 
45 min to quantify the oxygen consumed and calculated the OCR 
of the cell in the microwell (see Methods and Fig. 4b). The average 
single-cell OCR of the 87 normal cells was 1.40 ± 0.22 fmol min−1. 
We then switched to high-throughput mode. Among the 3,600 
microwells imaged, 2,438 showed significant changes in sO2 
within the 45 min of monitoring (Fig. 4c), indicating that a single 
cell was loaded in each of these wells. The oxygen consumed in 
each microwell was calculated based on the sO2 change (Fig. 4d) 
and the OCR of each single cell was calculated accordingly. The 
average single-cell OCR of the 2,438 cells from the normal breast 
tissues was 1.41 ± 0.23 fmol min−1. Similarly, we measured the sin-
gle-cell OCRs of the breast cancer cells from patients (Fig. 4e–h).  
In high-resolution mode, the measured average single-cell OCR of 
93 single cancer cells was 2.27 ± 0.42 fmol min−1. In high-through-
put mode, the measured average single-cell OCR of 2,463 single 
cancer cells was 2.21 ± 0.45 fmol min−1. To illustrate the cellular 
metabolic heterogeneity in breast cancer patients, the distributions 
of single-cell OCRs of the normal and cancer cells were plotted (Fig. 
4i and Supplementary Figs. 4,5). Although tumours contain multi-
ple populations of cells beside cancer cells, the cancer specimen had 
a significantly higher average single-cell OCR, due to its higher rate 
of metabolism, than those of the normal specimen. Paralleling the 
results from cultured cells, cells from the cancer tissue also showed 
a broader and more irregular distribution of single-cell OCRs, indi-
cating a higher degree of cellular metabolic heterogeneity than nor-
mal cells. The results from the breast cancer patients fully prove the 
ability of SCM-PAM to image intratumoral metabolic heterogeneity 
and show its potential for clinical translation.

Quantification of elevated cellular metabolic heterogeneity in 
cancer. To show the full capability of SCM-PAM in the quantitative 
characterization of intratumoral metabolic heterogeneity, we calcu-
lated and compared several key parameters of the single-cell OCR 
distributions of both cultured cells and cells from three breast can-

cer patients. Using cultured cells, we first calculated the coefficients 
of variation (Cv) of the single-cell OCR distributions of RAW264.7 
and A549 cells (see Methods). A549 cells showed a significantly 
higher Cv than the RAW264.7 cells (n = 5 groups, 14,055 RAW264.7 
cells and 13,257 A549 cells; *P = 0.015), indicating an elevated level 
of cellular metabolic heterogeneity (Fig. 5a). To quantify how close 
the single-cell OCR distributions are to normal distributions, we 
calculated the chi-squared (χ2) goodness-of-fit to normal distribu-
tions for the cultured cells (see Methods). A549 cells had a signifi-
cantly higher χ2 value than the RAW264.7 cells (n = 5 groups, 14,055 
RAW264.7 cells and 13,257 A549 cells; *P = 0.011), indicating a 
lower similarity to normal distributions (Fig. 5b). In other words, 
there was a higher level of chaotic cellular metabolic heterogeneity 
in cancer cells than in normal cells.

In subsequent tests using cells from three breast cancer patients, 
cancer cells had a higher average single-cell OCR, showing  
an increase in oxygen consumption compared with normal cells 
(Fig. 5c). We also measured the Cv and χ2 values of the single-cell 
OCR distributions of the normal and cancer cells. Cancer cells 
showed a significantly higher Cv than normal cells (n = 3 patients, 
7,549 normal cells and 6,807 cancer cells; *P = 0.013), indicating 
an elevated level of cellular metabolic heterogeneity (Fig. 5d). In 
addition, cancer cells had a significantly higher χ2 value than nor-
mal cells (n = 3 patients, 7,549 normal cells and 6,807 cancer cells; 
*P = 0.023), indicating a lower similarity to normal distributions 
and hence a higher level of chaotic cellular metabolic heterogene-
ity (Fig. 5e). The quantitative characterization of the intratumoral 
metabolic heterogeneity further demonstrate the capability of SCM-
PAM and its potential as a tool for both preclinical cancer research 
and clinical cancer therapy.

SCM-PAM of the oxygen consumption of cancer and normal 
cells in hypoxia. To demonstrate the versatility of SCM-PAM as 
a research tool, we applied it to study the oxygen consumption of 
single cells in hypoxia, an important hallmark of cancer. By chang-
ing the sO2 of the blood (that is, the oxygen supplier and sensor) in 
the microwells, we measured how the single-cell OCRs of normal 
and cancer cells depend on the environmental oxygen levels. In cul-
tured cells, both the A549 and RAW264.7 cells showed decreases in 
average single-cell OCRs in hypoxia, due to the lower oxygen supply 
(Fig. 6a). However, A549 cells showed a smaller relative decrease 
than RAW264.7 cells, indicating better adaptation to hypoxia. 
We also studied how cellular metabolic heterogeneity changes in 
hypoxia by measuring the Cv and χ2 values of single-cell OCR distri-
butions. The Cv values of both RAW264.7 and A549 cells increased 
in hypoxia, indicating more diverse metabolism of single cells under 
a lower oxygen supply. A549 cells had an even higher relative change 
in Cv, demonstrating a greater increase in cellular metabolic hetero-
geneity (Fig. 6b). The χ2 values of both RAW264.7 and A549 cells 
also became larger in hypoxia, showing that the chaotic levels of 
cellular metabolic heterogeneity increased under a lower oxygen 
supply (Fig. 6c). An interesting observation is that RAW264.7 cells 
had a higher relative change in χ2 values, showing a greater rela-
tive increase in the chaotic levels of cellular metabolic heterogeneity. 
This could be due to two reasons. First, the cancer cells started with 
a higher baseline level of chaos in cellular metabolic heterogene-
ity. Second, the cancer cells adapted better to hypoxia than the nor-
mal cells, leading to smaller further increases in the chaotic levels 
of cellular metabolic heterogeneity (Supplementary Fig. 6). Similar 
results were obtained in cells from the three breast cancer patients 
(Fig. 6d–f), which further validated the results and show the addi-
tional potential of SCM-PAM as an important research tool.

discussion
By ultrasonically probing the optical absorption of haemoglobin, 
which acts as both an oxygen supplier and sensor for single cells, 
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photoacoustic imaging achieves label-free OCR measurements. 
Without the need for exogenous oxygen sensors or labelling, a large 
population of cells can be screened for single-cell OCR measurement 
by creating an oxygen-diffusion-limited microenvironment for each 
cell using a high-density microwell array. Combining photoacous-
tic imaging with the high-density microwell array, SCM-PAM suc-
cessfully overcomes all of the major challenges in high-throughput 
single-cell OCR measurements and enables the imaging of cellular 
metabolic heterogeneity in cancer. In addition, by mixing cancer 
cells with whole blood, SCM-PAM avoids possible adverse effects 
on normal cell functioning that might be caused by embedded oxy-
gen sensors or labelling, oxygen consumption by electrode sensors28 
or photo-toxicity by fluorescent sensors29. We initially proved the 
capability of SCM-PAM in label-free, high-throughput, single-cell 
OCR measurement by imaging cultured normal and cancer cells. 
We further showed the full potential of SCM-PAM for clinical 
translation by imaging the intratumoral metabolic heterogeneity in 
breast cancer patients. By measuring and comparing the key param-
eters of single-cell OCR distributions of normal and cancer cells, we 
demonstrated the capability of SCM-PAM to quantify intratumoral 
metabolic heterogeneity. In addition, we showed other potential 
applications of SCM-PAM as a powerful research tool to study the 
oxygen consumption of single cells in hypoxia. More importantly, 
we characterized the chaotic feature of intratumoral metabolic  
heterogeneity with and without hypoxia.

Intratumoral heterogeneity refers to a unique characteristic 
observed specifically in tumours: cells from the same tumour may 
exhibit distinct phenotypic or epigenetic states due to mutations 
acquired during tumour evolution30. Heterogeneity can be studied 
from both genetic and phenotypic perspectives. In this work, we 
focused on the metabolic phenotype, an important hallmark of can-
cer. To study intratumoral metabolic heterogeneity, we developed 
SCM-PAM to measure the single-cell OCR distributions of the 
cells within the same tumours from breast cancer patients. We also 
quantitatively analysed the intratumoral metabolic heterogeneity 
using key parameters such as Cv and χ2 values. By strict definition, 
the results obtained by imaging the cultured cells did not reflect 
intratumoral metabolic heterogeneity as they were not cells from 
the same tumour. So, the term ‘cellular metabolic heterogeneity' 
was used instead of ‘intratumoral metabolic heterogeneity' for the 
cultured cells. The cultured cells were imaged to validate the abil-
ity of SCM-PAM to perform label-free, high-throughput, single-cell  
OCR measurement and assess the entire spectrum of single-cell 
OCR distributions.

Only two types of metabolic activities are possible in the microw-
ells containing target cells and blood. One is the metabolism of the 
target cells, which is the primary interest of this work. The other is 
the metabolism of red blood cells (RBCs). As oxygen carriers, RBCs 
do not consume oxygen because they do not have any mitochon-
dria31. The changes in oxygen content in the microwells are solely 
caused by the metabolism of the target cells. Thus, we can accurately 
measure the single-cell OCRs of the target cells by monitoring the 
change in oxygen content in the microwells over time.

In the high-resolution mode, each microwell was imaged by 
SCM-PAM with diffraction-limited lateral resolution. In the high-
throughput mode, SCM-PAM sampled four spots, each with a 
diameter of 10 μm (that is, the laser spot size), in each microwell. 
The spot diameter was set to 10 μm so that four spots would cover 
most of the 40-μm-diameter microwell. More importantly, because 
the measurements were taken 15 min apart in the experiments, the 
sO2 value in the microwell should be homogeneous and sampling 
any region of the microwell should yield similar results.

To account for the cancer cell count in each microwell accurately, 
we must exclude or minimize two possibilities. The first possibility 
is that more than one target cell is trapped in a microwell, which 
is unlikely for the following reason. The microwells are 40 μm in 
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Fig. 5 | elevated and chaotic cellular metabolic heterogeneity in  
cancer measured by Scm-PAm. a,b, Elevated cellular metabolic 
heterogeneity in cultured cells, measured using SCM-PAM (n = 5  
groups, 14,055 normal cells and 13,257 cancer cells). a, Cv values  
of the single-cell OCR distributions of cultured RAW264.7 and  
A549 cells. *P = 0.015. b, Chi-squared goodness-of-fit to normal 
distributions of the single-cell OCR distributions of RAW264.7 and A549 
cells. *P = 0.011. c, Average single-cell OCRs of normal and cancerous 
breast tissue cells from three breast cancer patients. For all three 
patients, the cancer cells consumed oxygen faster than the normal cell on 
average. *P = 0.030, 0.040 and 0.015 for Patients 1, 2 and 3, respectively. 
d,e, Elevated cellular metabolic heterogeneity in breast cancer patients, 
measured using SCM-PAM (n = 3 patients, 7,549 normal cells and 
6,807 cancer cells). d, Cv values of the single-cell OCR distributions of 
normal and cancer cells from breast cancer patients. *P = 0.013. e, Chi-
squared goodness-of-fit to normal distributions of the single-cell OCR 
distributions of normal and cancer cells from breast cancer patients. 
*P = 0.023. Paired one-tailed t-tests were used in the statistical testing; 
the error bars show the s.d.
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diameter and 50 μm deep, yet the target cells are approximately 
15–25 μm in diameter, and they are often irregularly shaped and 
mixed with a large number of RBCs. The major difficulty in the 
experiments was to successfully trap a target cell in a microwell and, 
with careful optimization, we achieved a filling ratio of about 75%. 
This fill ratio was validated by imaging the high-density microwell 
array with SCM-PAM in high-resolution mode (Fig. 2b), where no 
more than one target cell was identified in any microwell. The sec-
ond possibility is that a microwell is loaded with no cancer cell or 
with a dead cell. This case was identified and excluded when there 
was either no or a significantly smaller sO2 change in a microwell.

There is potential for variability in the total haemoglobin con-
tent in each microwell due to different numbers of RBCs in each 
microwell and to variation in the volumes of target cell. To under-
stand the variability and its effect on the single-cell OCR measure-
ment, we imaged the high-density microwell array loaded with 
blood or a blood–cell mixture with SCM-PAM in high-resolution 
mode at an illumination wavelength of 532 nm and quantified the 
total haemoglobin content over all of the pixels in each microwell.  
The total variations in haemoglobin content in each microwell were 
less than 2 and 5% for blood only and the blood–cell mixture, respec-
tively (Supplementary Fig. 7). This small variation is due to the fact 
that the microwells are much larger than an RBC (diameter of ~3–8 μm 
and thickness of ~1–2 μm). The variation in measurements of single-
cell OCRs was therefore not significant enough to affect the results in 
the characterization of intratumoral metabolic heterogeneity.

It is worth pointing out that OCR is defined as the volume of 
oxygen consumed per unit time by a single cell. It represents the 
overall capability of a single cell to consume oxygen, taking into 
consideration all other related factors, including cell mass. Thus, we 
refer to it as single-cell OCR. Elsewhere in the literature, OCR is 
defined as the volume of oxygen consumed per unit time per unit 
mass32. In this case, OCR essentially reflects the active levels of cel-
lular metabolic pathways or mitochondria in a certain cell type33. 
When OCR is defined in such a way, it is an important parameter 
to compare cellular metabolism between different cell types. In 
this work, we aim to study the heterogeneity of metabolic states of 
single cells from the same tumour—that is, intratumoral metabolic  

heterogeneity—with SCM-PAM, instead of comparing cellular 
metabolism between different cell types. So, the former definition 
of OCR is used. If SCM-PAM is used to cross compare cellular 
metabolisms of different cell types, this method is reliable only if 
the measurements are properly normalized by the cell masses.

Two key parameters, the Cv and χ2 values, were used in the analy-
sis of intratumoral metabolic heterogeneity. A smaller Cv shows a 
lower dispersion level in the single-cell OCR distribution. A smaller 
χ2 value indicates a lower chaotic level in the single-cell OCR dis-
tribution because most cells in the population tend to follow the 
same normal distribution. A better fit-to-normal distribution does 
not necessarily indicate a lower dispersion level because the Cv of 
a single normal distribution can be large. We believe that both the 
dispersion level (quantified by the Cv) and the chaotic level (quanti-
fied by the χ2 value) are important parameters in describing intra-
tumoral metabolic heterogeneity and hence analysed both aspects.

Both elevated and chaotic metabolic heterogeneity was observed 
in cancer cells by SCM-PAM in our results. The elevated cellular 
metabolic heterogeneity can be attributed to the genomic instability 
in cell cloning and propagation34, the high potency in cell differen-
tiation—characteristic of cancer stem cells35—and the presence of 
mixed cell populations in the patient specimens. First, cancer-cell 
propagation results in the constant acquisition of mutations from 
unstable genome replications, resulting in genomic and phenotypic 
diversity within a single tumour36. Second, cancer stem cells produce 
a variety of cell types in a tumour through a differentiation hier-
archy37. Third, tumours are comprised of multiple populations of 
cells beside the cancer cells themselves, such as inflammatory cells, 
which may contribute to the metabolic heterogeneity. The genomic 
diversity, distinct cancer cell types and mixed cell populations 
within a single tumour result in elevated intratumoral metabolic 
heterogeneity. Furthermore, the gene expression unpredictability 
within a single cancer-cell type leads to chaotic cellular metabolic 
heterogeneity. The high unpredictability of gene expression yields 
different mitochondrial contents at different times, creating a cha-
otic metabolic system even in a single cancer cell38. Together, these 
factors contribute to the elevated and chaotic intratumoral meta-
bolic heterogeneity observed by SCM-PAM.

0.8

0.6

0.4

0.2

0
1

1

0.8 0.6 0.4 0.2 0.81

1

1.2

1.4

1.6

0.6 0.4 0.2

1

1.2

1.4

1.6

0.81 0.6 0.4 0.2

N
or

m
al

iz
ed

 C
v

N
or

m
al

iz
ed

 C
v

N
or

m
al

iz
ed

 O
C

R
N

or
m

al
iz

ed
 O

C
R

0.8

0.6

0.4

0.2

0

1

1 0.8 0.6 0.4 0.2 1 0.8 0.6 0.4 0.2 1 0.8 0.6 0.4 0.2

1

1.2

1.4

1.6

N
or

m
al

iz
ed

 χ
2 

 
N

or
m

al
iz

ed
 χ

2 

 

sO2

sO2 sO2

sO2
sO2

sO2

a b c

fed

1

1.2

1.4

1.6

RAW264.7 cells
A549 cells

RAW264.7 cells
A549 cells

RAW264.7 cells
A549 cells

Normal cells
Cancer cells

Normal cells
Cancer cells

Normal cells
Cancer cells

Fig. 6 | oxygen consumption of cancer and normal cells in hypoxia measured by Scm-PAm. a–c, Oxygen consumption of cultured cells in hypoxia 
measured by SCM-PAM (n = 5 groups). a, Normalized single-cell OCRs of cultured RAW264.7 and A549 cells at different sO2 levels. b,c, Normalized Cv 
(b) and χ2 (c) values of the single-cell OCR distributions of RAW264.7 and A549 cells at different sO2 levels. d–f, Oxygen consumption of normal and 
cancer cells from the three breast cancer patients in hypoxia, measured by SCM-PAM (n = 3 patients). d, Normalized single-cell OCRs of normal and 
cancer cells from breast cancer patients at different sO2 levels. e,f, Normalized Cv (e) and χ2 values of the single-cell OCR distributions of normal and 
cancer cells from breast cancer patients at different sO2 levels. The error bars show the s.d.

NATuRe BIomedIcAL eNgINeeRINg | VOL 3 | MAY 2019 | 381–391 | www.nature.com/natbiomedeng388

http://www.nature.com/natbiomedeng


ArticlesNature BIomedIcal eNgINeerINg

The OCR of an individual cell is the sum of the OCRs of all of the 
subcellular mitochondria, which are responsible for aerobic glycoly-
sis, that is, oxygen consumption. Mathematically, we have

∑=
=

S M (1)n
i

n

i
1

Here, Sn denotes the single-cell OCR, Mi represents the ith mitochon-
drion OCR and n denotes the virtual number of mitochondria in the 
cell. Because n is highly consistent39, it can be treated as a constant 
within a cell type. According to the central limit theorem, Sn follows 
a normal distribution if Mi follows the same distribution regardless 
of its shape. By sampling a massive number of single cells simultane-
ously, we can accurately model the distributions of Sn and compare 
them to a normal distribution using the χ2 test. We found that cancer 
cells, both in the cultured cell lines as well as the patient tumours, 
deviated further from normal distributions—that is, with greater 
χ2 values—than normal cells, probably due to the aforementioned 
factors. First, both the genomic diversity and the multiple types of 
cancer cells within a tumour generate distinct n values and Mi distri-
butions. Second, even within a single cancer cell type, the unpredict-
ability of gene expression produces incongruent distributions of Mi. 
This observation characterized the chaotic feature of intratumoral 
metabolic heterogeneity for the first time at the mitochondrial level.

In an effort to further understand the contributions of dis-
tinct cancer-cell subclones to intratumoral metabolic heterogene-
ity, we tried to calculate the number of distinct cell subclones in 
the sampled cancer cells. By assuming that the single-cell OCR of 
each cell type follows a normal distribution, we fitted the single-cell 
OCR distributions of the cancer cells to the sum of multiple nor-
mal distributions (Supplementary Fig. 8). The number and weight 
of the normal distributions were obtained during fitting. The fitting 
results showed that the distributions of the single-cell OCRs of the 
cancer cells were the sum of multiple normal distributions, indi-
cating that there may be several cell subclones or types within the 
cancer cell population examined.

The functionality of SCM-PAM can be further enhanced in two 
aspects. First, the imaging throughput can be further improved by 
using an array with more microwells and increasing the imaging 
speed. To make an array with more microwells, more robust fabrica-
tion materials and processes are required. To increase the imaging 
speed, new scanning mechanisms, such as microelectromechanical 
system mirror-based scanning, can be used40. Second, additional 
parameters can be measured to provide more information on sin-
gle-cell metabolism. Cell sizes can be more accurately quantified in 
three dimensions by using the photobleaching effect41 and pH val-
ues can be measured with a pH-sensitive fluorescent dye42.

SCM-PAM holds great promise for clinical translation in several 
areas, including the emerging area of hypoxia targeting, under-
standing metabolic diversity within and between tumours, and 
investigating the effect of the metabolic heterogeneity on tumour 
phenotype and drug responsiveness. First, SCM-PAM only requires 
tumour dissociation into a single-cell suspension with no further 
special sample preparation required, which makes it easy and con-
venient for clinical adoption. Second, it takes less than 20 min for 
SCM-PAM to obtain the single-cell OCR distribution of one patient, 
which is sufficiently short for clinical application. Third, although 
in this work we have focused on breast cancer, SCM-PAM can be 
applied to image intratumoral metabolic heterogeneity of virtually 
all solid tumours that can be sampled. The microwell size can be 
adjusted to better accommodate different cancer cells of varying 
size. Fourth, there is the potential for cell retrieval from the device 
so that molecular analysis can be performed on individual cells to 
correlate with their intrinsic metabolic activity or to assess their bio-
logical phenotype.

The information obtained on single-cell metabolism and intratu-
moral metabolic heterogeneity will be particularly valuable to can-
cer therapy43. Information on the single-cell metabolism of cancer 
cells can be used for therapy response monitoring and evaluation44, 
which can help screen drug combinations and develop personalized 
cancer therapy strategies45. For example, the metabolic heterogene-
ity can be assessed in residual tumours after neoadjuvant treatment 
to determine whether specific metabolically active cell populations 
are resistant or sensitive to therapy. Apart from cancer therapy, by 
measuring the single-cell OCR distributions of different tumours 
in one patient, SCM-PAM can also be used to investigate intertu-
moural heterogeneity and response to therapy. Moreover, SCM-
PAM is particularly suitable for studying the metabolic states of 
circulating tumour cells, the key determinants of cancer metastatic 
propensity, because blood is the original biological environment for 
circulating tumour cells46.

In summary, we have developed and optimized SCM-PAM, 
which combines a wide-field fast-scanning functional OR-PAM with 
a high-density microwell array, for the label-free, high-throughput, 
single-cell imaging of intratumoral metabolic heterogeneity. We have 
demonstrated its capability by measuring the single-cell OCR distri-
butions of cultured cells and showed its potential for clinical trans-
lation by imaging intratumoral metabolic heterogeneity in patient 
breast cancer specimens. In addition, with rich optical absorption 
contrast, the wide-field fast-scanning functional OR-PAM subsys-
tem of SCM-PAM may provide specific insights into angiogenic 
potential, metastatic propensity and drug sensitivity—all on a cellu-
lar level—as well as intratumoral heterogeneity47–49. With its unique 
capability for label-free, high-throughput, single-cell OCR measure-
ments and the potential to provide multidimensional information 
about tumours, SCM-PAM is a promising tool for both fundamental 
cancer research and personalized clinical cancer therapy.

methods
SCM-PAM system. To achieve label-free, high-throughput, single-cell metabolic 
imaging, we combined a functional OR-PAM system with a high-density microwell 
array (Fig. 1). For sO2 measurement, the system employs a solid-state laser at 
532 nm (SPOT, Elforlight) and a dye laser (CBR-D, Sirah) at 559 nm. The combined 
laser beam was reshaped by a 2 mm aperture iris (ID25SS, Thorlabs) and attenuated 
by a neutral density filter (NDC-50C-2M, Thorlabs). A pair of condenser lenses 
(LA1131, Thorlabs) and a pinhole (P50C, Thorlabs; diameter of 50 μm) were 
used to spatially filter the laser beam. A beam sampler (BSF10-A, Thorlabs) and a 
photodiode were used to monitor the laser intensity fluctuation. The filtered laser 
beam was then coupled to a single-mode photonic crystal fibre (LMA-10, NKT 
Photonics). The output of the single-mode fibre was collimated by an objective lens 
(RMS4X, Thorlabs), reflected by a mirror and focused on the object by another 
identical objective lens. A beam combiner, composed of a thin layer of silicone oil 
sandwiched by a rhomboid prism (NT49-419, Edmund Optics) and a right-angle 
prism (NT32-545, Edmund Optics), provided acoustic–optical coaxial alignment. 
The generated photoacoustic waves were detected by an ultrasonic transducer with 
a central frequency of 50 MHz (V214-BB-RM, Olympus-NDT) placed confocally 
with the objective lens.

Lateral resolution of SCM-PAM. The lateral resolution of the SCM-PAM system 
was measured by imaging a sharp metal edge with a scanning step size of 0.625 µm 
and a scanning range of 100 µm along the x axis (Supplementary Fig. 1). The 
measured data were fitted to an edge spread function and the line spread function 
was calculated based on the fitted edge spread function. The full width at half 
maximum of the line spread function was quantified as the lateral resolution. The 
experimentally measured lateral resolution of SCM-PAM was 2.71 µm, which is 
close to the theoretical value of 2.66 µm.

High-density microwell array. To achieve label-free, high-throughput, single-cell 
metabolic imaging, we designed and fabricated a high-density microwell array 
capable of trapping a single cell in each microwell. To ensure that no more than one 
cell was trapped, each microwell was designed with a diameter of 40 μm and depth 
of 50 μm, and the microwells were set 80 μm apart. SU-8 50 (NANO) resist was 
used for fabrication of the microwell array. To enable the effective loading of cells 
and blood without trapping air in the microwells, the array was fabricated on an 
anodisc inorganic filter membrane (Whatman). To improve adhesion between the 
SU-8 substrate and the anodisc inorganic filter membrane, a 400-nm-thick layer of 
aluminium was deposited between them. The anodisc inorganic filter membrane 

NATuRe BIomedIcAL eNgINeeRINg | VOL 3 | MAY 2019 | 381–391 | www.nature.com/natbiomedeng 389

http://www.nature.com/natbiomedeng


Articles Nature BIomedIcal eNgINeerINg

did not function as an oxygen reservoir. The experiments used whole blood with 
intact RBCs. Because RBCs are approximately 3–8 μm in diameter and the pore 
size of the filter membrane was 100 nm, only plasma, in which dissolved oxygen is 
negligible, could pass through the filter membrane. Hence, the filter membrane did 
not increase the oxygen capacity of the microwells and it had a negligible effect on 
the calculation of single-cell OCR. In addition, the pores in the filter membrane are 
not connected with each other, so oxygen cannot diffuse between microwells.

The detailed fabrication process was as follows (Supplementary Fig. 2). First, 
a 400-nm-thick layer of aluminium was deposited on one side of a 60-μm-thick 
anodisc inorganic filter membrane by an e-beam evaporator (Kurt J. Lesker). 
Second, SU-8 50 was spin coated on the aluminium layer at 500 r.p.m. for 10 s 
in the spread cycle and at 4,000 r.p.m. for 30 s in the spin cycle to generate a 
50-μm-thick layer of SU-8 substrate. The entire substrate was then soft baked in 
an oven at 90 °C for 3 h, after which the SU-8 was exposed to near-ultraviolet light 
at 200 mJ cm−2. After post-exposure baking, the microwells were developed in an 
SU-8 developer. The entire high-density microwell array was then immersed in 
aluminium etchant, during which the aluminium layer beneath the microwells 
was etched away, while the remaining part of the aluminium layer was kept.

Cell culture and reagents. Three types of cells (B16 mouse melanoma, RAW264.7 
and A549 cell lines) were obtained from the Tissue Culture and Support Centre 
at the Washington University School of Medicine. The B16 and RAW264.7 cells 
were cultured in Dulbecco’s Modified Eagle medium (Invitrogen) supplemented 
with 10% fetal bovine serum (Invitrogen) at 37 °C in 5% CO2. The A549 cells 
were cultured in F-12K medium at 37 °C in 5% CO2. At 75–80% confluence, the 
cells were harvested with 0.25% trypsin–EDTA solution (Invitrogen) to generate 
a single-cell suspension at a concentration of 1 × 106 cells ml−1 and then mixed 
with the same volume of blood (cat. no. 910, Quad Five). In the pharmacological 
intervention experiments, 12 μM oligomycin (AB143424, Abcam), 2 μM rotenone 
(cat. no. 45656, Sigma-Aldrich) and 2 μM antimycin (A8674, Sigma-Aldrich) were 
added to the blood-cell mixture.

Cells from patient specimens. After informed consent was obtained, breast cancer 
and normal tissues were collected from women with newly diagnosed clinical 
stage I/II breast cancer undergoing breast-conserving surgery. The cancer tissues 
primarily consisted of cancer cells and may also have contained some stromal 
cells. The normal tissues were from the same breasts, but distant from the cancer. 
They were primarily adipose tissue and may have contained fibrous breast tissue. 
The protocol was approved by the Institutional Review Board at the Washington 
University in St. Louis. After excision, the breast tissue was immediately 
transported in saline from the operating room to the lab and dissociated to a 
single-cell suspension with a gentleMACS Dissociator (Miltenyi Biotec) with 
minimal ischaemia time.

Label-free, high-throughput, single-cell OCR measurement by SCM-PAM. To 
achieve label-free, high-throughput, single-cell OCR measurement, 0.1 ml of the 
single-cell suspension containing ~10,000 single cells was mixed with the same 
volume of fully oxygenated blood (cat. no. 910, Quad Five) and loaded into the 
high-density microwell array. After waiting for the cells to settle into the microwells, 
the high-density microwell array was gently flushed with fully oxygenated blood and 
fresh cell culture medium to remove cells outside the microwells and a small rubber 
squeegee was subsequently drawn across the flat surface. After gently immersing 
the microwell array in silicone oil for oxygen sealing, the entire assembly was 
transferred to SCM-PAM for single-cell OCR measurement. During the single-cell 
OCR measurement, a lab-made heating pad maintained the temperature.

Because the amount of oxygen dissolved in blood is negligible compared 
with its counterpart bound to haemoglobin, the sO2 change in a microwell can be 
considered reflective of the change in oxygen content in the microwell. The OCR of 
a single cell in a microwell can be calculated by:

=
Δ
Δt

OCR
O

(2)2

Here ΔO2 represents the amount of oxygen change in the microwell over a certain 
time period Δt. The oxygen change in a microwell can be calculated by:

Δ = × Δn V C (3)b bO2

Where Vb is the volume of blood in the microwell, which is 4.9 × 104 fl and ΔCbO2
 is 

the change of oxygen concentration in the blood, which is proportional to the sO2 
change ΔsO2:

Δ = × Δ ×C C4 sO (4)bO 2 Hb2

Here CHb is the concentration of haemoglobin in the blood and the factor 4 is the 
bonding ratio between oxygen and haemoglobin. Combining the above three 
equations, the OCR can be calculated by:

=
× × Δ ×

Δ
V C

t
OCR

4 sO
(5)b 2 Hb

Single-cell OCR measurement in hypoxia. To evaluate the OCRs of single cells in 
hypoxia, blood with sO2 of 100, 80, 60, 40 and 20% were used in the experiments. 
They were obtained by mixing fully oxygenated blood with fully deoxygenated 
blood at the appropriate ratios. For example, the blood with 80% sO2 was obtained 
by mixing fully oxygenated blood with fully deoxygenated blood at a ratio of 4:1. 
Similarly, the ratios used to obtain blood with 60, 40 and 20% sO2 were 3:2, 2:3 and 
1:4, respectively.

Cv and χ2 goodness-of-fit. The coefficient of variation Cv is defined as the ratio of 
the standard deviation σ to the mean µ of a distribution:

σ=
μ

C (6)v

It is a normalized measure of the dispersion of the single-cell OCR distribution and 
thus a parameter to quantify and compare intratumoral metabolic heterogeneity.

The χ2 goodness-of-fit was used to assess how close the single-cell OCR 
distribution was to a normal distribution. The data was first grouped into bins, and 
the observed and expected counts for the bins were next calculated. The χ2 value 
was then calculated by

∑χ =
−

.
=

O E
E

( )
(7)

i

N
2

1

i i
2

i

Here Oi denotes the observed counts and Ei denotes the expected counts based 
on the normal distribution. A smaller χ2 value indicates a better fit to the normal 
distribution and a lower level of intratumoral cellular metabolic heterogeneity.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

data availability
The authors declare that all data supporting the results in this study are available 
within the paper and its Supplementary information. The source data for the 
figures in this study are available in (identifier figshare)50.
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