
Photoacoustics 2 (2014) 87–101
Review Article

Sensitivity of photoacoustic microscopy

Junjie Yao, Lihong V. Wang *

Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2. Photoacoustic signal generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.1. Fundamentals of photoacoustic signal generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.2. Optimize PA signal generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3. Noise in photoacoustic imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4. Ultimate detection sensitivity in PAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5. High-sensitivity PAM systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1. Optimal optical excitation in PAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2. Optimal acoustic detection in PAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3. Optical-acoustic combination in PAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6. Contrast agents for PAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7. High-sensitivity imaging and sensing by PAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.1. Label-free single-cell photoacoustic flowoxigraphy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2. Photoacoustic detection of circulating tumor cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3. Nanotube enhanced tumor targeting by PAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.4. PAM sensitivity of other derived parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A R T I C L E I N F O

Article history:

Received 5 March 2014

Accepted 12 April 2014

Available online 24 April 2014

Keywords:

Photoacoustic microscopy

Detection sensitivity

Absorption contrast

Ultrasonic transducer

Early cancer detection

Contrast agents

A B S T R A C T

Building on its high spatial resolution, deep penetration depth and excellent image contrast, 3D

photoacoustic microscopy (PAM) has grown tremendously since its first publication in 2005. Integrating

optical excitation and acoustic detection, PAM has broken through both the optical diffusion and optical

diffraction limits. PAM has 100% relative sensitivity to optical absorption (i.e., a given percentage change

in the optical absorption coefficient yields the same percentage change in the photoacoustic amplitude),

and its ultimate detection sensitivity is limited only by thermal noise. Focusing on the engineering

aspects of PAM, this Review discusses the detection sensitivity of PAM, compares the detection efficiency

of different PAM designs, and summarizes the imaging performance of various endogenous and

exogenous contrast agents. It then describes representative PAM applications with high detection

sensitivity, and outlines paths to further improvement.

� 2014 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-SA

license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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1. Introduction

In the last decade, photoacoustic tomography (PAT) has been
drawing increasing attention from various research communities,
including imaging, chemistry, material, physics, and biomedicine
[1–3]. Briefly, in PAT, as photons travel in tissue, some of them are
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absorbed by molecules and their energy is partially or completely
converted into heat. The heat then induces an initial pressure rise,
which propagates as an acoustic wave. An ultrasonic transducer or
transducer array detects the acoustic wave to form an image,
which maps the original optical energy deposition in the tissue [4].

As shown in Fig. 1, PAT can be classified according to system
attributes. These attributes include the image formation method,
spatial resolution, number of ultrasonic transducer elements,
image contrast, probe size, and image dimensions. For example,
PAT has two major implementations based on their image
formation methods [5]: reconstruction-based photoacoustic com-
puted tomography (PACT), and acoustic-lens-based photoacoustic
imaging. In PACT, the object is excited by a broadened laser beam.
Ultrasonic transducers are placed around the object to simulta-
neously receive the ultrasonic waves emitted. At any given time
point, an ultrasonic transducer integrates initial photoacoustic
pressures over a spherical surface centered at the detector with a
radius equal to the product of the speed of sound and the time. This
integration is referred to as the spherical Radon transform. The
spherical Radon transform can then be inverted by various
reconstruction methods [6], such as the universal back-projection
method [7] and iteration-based time reversal method [8], to map
the laser-induced initial pressure rise distribution, which reflects
the optical absorption contrast in the object.

Instead of reconstructing an image digitally in PACT, a focused
ultrasound transducer is used for analog image reconstruction,
most commonly, in photoacoustic microscopy (PAM). Upon a
pulsed laser excitation, the focused ultrasound transducer picks up
a time-resolved PA signal emitted from the acoustic focal zone. A
single laser pulse yields a 1D image. Scanning across the tissue
yields a 2D image. Raster scanning yields a 3D image. The acoustic
focusing can be accomplished either by affixing an acoustic lens
(spherical or cylindrical) to a flat ultrasonic transducer or by
curving the active ultrasonic element itself. Here, we define PAM as
an implementation of PAT with a spatial resolution finer than
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50 mm, since the naked eye can discern features larger than 50 mm.
By using a 5 MHz focused ultrasonic transducer, deep-penetration
photoacoustic macroscopy (PAMac) relaxes the lateral resolution
to 560 mm and extends the maximum imaging depth to a few
centimeters. PAMac is not classified as microscopy but is covered
in this Review to demonstrate the scalability of PAT. In addition,
photoacoustic endoscopy (PAE) is considered as a variant of PAM
for internal organ imaging, which is typically rotational scanning
based.

Harnessing the rich optical absorption contrast and the low
ultrasonic scattering in tissue, PAT is one of the fastest growing
biomedical imaging modalities [1]. Comprehensive reviews of PAT
technology can be found in previous publications [3,9]. Here, we
will focus only on the development of PAM technology. PAM
typically employs raster-scanning of its optical and acoustic foci
and forms images directly from acquired depth-resolved signals
[10]. While the axial resolution of PAM is primarily determined by
the imaging depth and the frequency response of the ultrasonic
transducer, its lateral resolution is determined by the product of
the point spread functions of the dual foci. Based on its
configuration, PAM can be further classified into optical-resolution
PAM (OR-PAM), where the optical focus is much smaller than
acoustic focus [11], and acoustic-resolution PAM (AR-PAM), where
the acoustic focusing is tighter [12,13].

Among all the imaging parameters of PAM, detection sensitivity
is of particular interest, since it reflects the minimum number of
targets at different length scales (e.g., melanoma tumor cells,
hepatitis virus, glioblastoma-targeting nanoparticles and hemo-
globin molecules) needed to measure signals above the noise and
provide accurate diagnosis of disease [10,14–17]. For example, in
early cancer detection, it is required that PAM should be able to
detect as few as 104 cancer cells (0.01 mg or 0.01 mL), because
malignant switching in cancer progression typically needs �105

cells growing as a single mass [18]. In PAM, energy is transformed
through three steps. First, optical (electromagnetic) energy is
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transformed to thermal energy via absorption and nonradiative
relaxation. Then, thermal energy is transformed to mechanical
energy through thermoelastic expansion. Finally, mechanical
energy is transformed to electrical energy via piezoelectric effect
by ultrasonic transducers [1,19,20]. In each step, the energy
conversion efficiency is limited while noise is present. Therefore,
the detection sensitivity of PAM is affected by a number of factors,
such as the incident laser fluence, optical absorption coefficient of
the target, and detection efficiency of the ultrasonic transducer.
With optimal illumination and detection configurations, the
detection sensitivity of PAM is fundamentally limited by thermal
noise, which can present in the acoustic detection system as well as
in the medium itself [15].

In this Review, we will first analyze the signal and noise
generation in PAM, and discuss the fundamental detection
sensitivity that PAM can achieve. Then, we will compare the
current engineering solutions designed to maximize the detection
sensitivity of PAM. Endogenous and exogenous contrast agents for
high-sensitivity PAM imaging will also be discussed through
representative biomedical applications. At last, possible paths
toward further improvement in PAM detection sensitivity will be
outlined.

2. Photoacoustic signal generation

In PAM, PA signals can be generated by either pulsed excitation
[11,12] or intensity-modulated continuous-wave (CW) excitation
[15,21–24]. Although CW lasers are generally less expensive,
pulsed lasers are much more frequently used in PAM, mainly
because the PA signal-to-noise ratio (SNR) in pulsed excitation is
greater than that in CW excitation [21,22] if the same number of
photons are delivered or ANSI safety limits are observed [25].

2.1. Fundamentals of photoacoustic signal generation

When thermal confinement is satisfied, we obtain the PA
equation for an arbitrary absorbing target with an arbitrary
excitation source [4]:

r2 � 1

v2
s

@2

@t2

  !
pð~r; tÞ ¼ � b

CP

@Hð~r; tÞ
@t

; (1)

where pð~r; tÞ denotes the acoustic pressure rise at location ~r and
time t, vs is the speed of sound (�1480 m/s in water), b denotes the
thermal coefficient of volume expansion (�4 � 10�4 K�1 for
muscle), Cp denotes the specific heat capacity at a constant
pressure (�4000 J/kg/K for muscle), and Hð~r; tÞ is the heating
function. The left hand side of Eq. (1) describes wave propagation
in an inviscid medium, whereas the right-hand side represents the
source. Eq. (1) shows that the propagation of a PA pressure wave is
driven by the first time derivative of the heating function Hð~r; tÞ.
Therefore, time-invariant heating does not generate a PA pressure
wave; only time-variant heating does.

In the case of a delta-pulse excitation, the initial pressure rise in
the target is related to the heating function by

p0 ¼ G H ¼ G hthmaF; (2)

where p0 is the initial pressure rise, and G is the Grueneisen
parameter defined as G ¼ bv2

s =CP , hth is the percentage of absorbed
energy that is converted to heat, ma is the optical absorption
coefficient, and F is the optical fluence. PA response to a finite-
duration pulsed or CW excitation can be computed by convolving
the heating function with the impulse response solution to Eq. (1),
based on the Green’s function approach [4].
The intensity of an excitation pulse is often approximated by a
Gaussian function as

I pulsedðtÞ ¼ F

t
ffiffiffiffiffiffiffi
2p
p exp � t2

2t2

� �
; (3)

where F is the fluence per pulse, and the full width at half
maximum (FWHM) of the temporal pulse profile is 2

ffiffiffiffiffiffiffiffiffiffi
2ln2
p

t.
For a point target, the resultant PA pressure is proportional to

the time derivative of the excitation pulse. We have the maximum
PA pressure as

p pulsed;max/
G hthmaF

t2
: (4)

In the case of intensity-modulated CW excitation, the light
intensity is given by

ICW ðtÞ ¼ I0½1 þ sinðwctÞ�; (5)

where I0 is the time-averaged light intensity, and wc is the
modulation frequency. Then, the maximum PA pressure from a
point target is given by

pCW;max/ G hthmawcI0: (6)

Comparing Eqs. (4) and (6), we can see that pulsed excitation is
more efficient in generating PA signals. According to the ANSI
standard, in the visible spectral region on the skin surface, the
maximum permitted F is 20 mJ/cm2 and the maximum permitted
I0 is 200 mW/cm2 [25]. At such ANSI limits, for example, if the pulse
width is 10 ns for pulsed excitation and the modulation frequency
is 50 MHz for CW excitation, ppulsed,max is approximately six orders
of magnitude (�120 dB) stronger than pCW,max. If the number of
incident photons is conserved, ppulsed,max is approximately seven
orders of magnitude (�140 dB) stronger than pCW,max.

In addition, unlike single-frequency CW excitation, pulsed
excitation can provide axial resolution: the acoustic flight time in
pulsed excitation provides depth information about the absorbing
targets, and the axial resolution is jointly determined by the laser
pulse width, frequency-dependent acoustic attenuation of the
tissue, and detection bandwidth of the ultrasonic transducer. By
contrast, single-frequency CW excitation cannot separate signal
contributions from absorbers at different depths [22], unless
chirped modulation or other wide-band techniques are used [21].

2.2. Optimize PA signal generation

Maximizing PA signal generation is critical for improving the
detection sensitivity of PAM. Several factors can be optimized to
improve the PA signal generation.

The absorption coefficient ma describes the probability of photon
energy absorption in a medium per unit infinitesimal path length,
and is heavily wavelength dependent. In a medium containing many
absorbers of the same kind with number density of Na and
absorption cross section of sa, the absorption coefficient ma is given
by ma = Nasa. Increasing the detection sensitivity naturally requires
the use of absorbers with high sa. Larger molecules generally have
greater absorption cross sections with some exceptions. For
example, nanoparticles with surface plasmon resonance have larger
absorption cross sections than most organic dye molecules [26].

Nevertheless, as ma increases, the increase in PA signal tends to
saturate when the mean absorption length (i.e., 1/ma) is
comparable to or smaller than the axial resolution, a phenomenon
called the spatial saturation effect, where the spatial decay of
specific optical absorption (i.e., absorbed optical energy per unit
volume) cannot be resolved [27]. As ma increases further, the
increased PA signal component falls into higher frequencies. After
low-pass filtering by acoustic propagation in tissue, the PA signal
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strength in the detectable bandwidth does not change. In this case,
the detected PA signal relies on only the incident optical energy
regardless of the optical absorption coefficient [28].

The thermal conversion efficiency hth reflects the percentage of
absorbed photon energy that is converted into heat. The PA effect
relies on the nonradiative relaxation of excited molecules to the
ground state. Therefore, minimizing radiative relaxation, such as
fluorescence and phosphorescence, increases the PA signal genera-
tion. Chromophores with zero or low fluorescence quantum yield,
such as hemoglobin and melanin, are commonly used as PA imaging
contrast. Recently, Förster resonance energy transfer (FRET) has
been demonstrated in PAM imaging. In FRET PAM, the reduction of
donor fluorescence emission (e.g., Rhodamine 6G), as a result of
nonradiative energy transfer to the acceptor (e.g., DQOCI), results in
an increase in PA emissions from the donors [29].

The Grueneisen parameter G is a dimensionless factor that
reflects the conversion efficiency from thermal energy (heat) to
mechanic energy (pressure). At body temperature (37 8C), G of
water or high-water-content tissue is about 0.2, so, for each
milliKelvin temperature rise, an 8-mbar (800 Pa) pressure rise is
produced. G itself is temperature dependent [4]. Specifically,
around body temperature, every degree increase in temperature
results in a 5% increase in b, a 0.1% increase in vs and a 0.02%
increase in CP. Therefore, an increase in the equilibrium tempera-
ture in the medium results in an increase in G, and thus the PA
signal amplitude (�5% per 8C). This temperature dependence has
been used for temperature sensing with PAM [30,31]. As discussed
later, theoretically speaking, an increase in equilibrium tempera-
ture also results in an increase in acoustic thermal noise in the
medium. However, at body temperature, every degree increase in
temperature results in only a 0.15% increase in thermal noise
amplitude, which is negligible. Note that, here we refer to the
equilibrium temperature of the medium, not the change in
temperature of the absorbing target due to the laser heating. In
linear PA generation, the instantaneous temperature increase in
the target due to the laser pulse heating is on the order of
millikelvins, and its effect on the Grueneisen parameter is
negligible. In nonlinear PA generation, the initial deposition of
heat at the beginning of the excitation pulse increases the thermal
expansion coefficient, and thus the generation of subsequent PA
signal by the continuing addition of heat takes place with higher
efficiency [32]. This effect is called PA thermal nonlinearity.

In linear PAM, the PA wave pressure is proportional to the fluence
F. To optimize PA detection sensitivity, using the maximum
permitted F is logically the most appealing and usually the most
effective solution. Nevertheless, potential laser damage to biological
tissue is a concern when high laser fluence is used. ANSI has detailed
laser safety standards with regard to tissue types and illumination
conditions [25]. Generally speaking, laser fluence under the ANSI
limit is required for safety. However, in PA imaging with nanosecond
excitation, signal generation shares the same mechanism as tissue
damage, which is related to the photothermal process. This suggests
that excitation fluence above the ANSI limit can be justified for
weakly absorbing targets, since a weak PA signal is accompanied by a
low chance of thermal damage. This is different from femtosecond
excitation used in two-photon microscopy, where optical break-
down is the dominant damage mechanism [33].

As in any optical excitation technique, photoacoustic genera-
tion also exhibits nonlinearity to excitation intensity. On one hand,
optical absorption saturation prevents the pressure amplitude
from increasing indefinitely with optical intensity [34,35]. On the
other hand, thermal nonlinearity can offset optical absorption
saturation to some extent, as it typically enhances photoacoustic
generation [32]. Furthermore, at very high optical intensities, heat
can generate strong shock waves through cavitation, which may
cause tissue damages [36].
In optical absorption saturation, Isat = hn/(satr) is the saturation
intensity, where h is the Planck’s constant, v is the optical
frequency, and tr is the absorption relaxation time of the molecule.
As the excitation intensity approaches Isat, the generated PA signal
increases with significant nonlinearity until it approximately
approaches a finite value. In optical thermal nonlinearity, the
absorbed optical energy induces an increase in the local tempera-
ture, which elevates the generated PA pressure. Combining the
optical saturation with the thermal nonlinearity, the effective
optical fluence can be approximated by

Fe f f �
F

1 þ I=Isat
1 þ kth

F

1 þ I=Isat

� �
; (7)

where kth is a proportionality constant that describes the heating
efficiency of the local temperature by the absorbed optical energy.
kth is a compound parameter that is highly sensitive to the volume
in which heat is deposited and to the rate at which heat diffuses
[32].

The practical impact of Eq. (7) needs to be carefully considered.
The thermal nonlinear effect is due to heat accumulation in the
absorber-medium complex, while the saturation effect is due to
the depletion of ground-state molecules in the target. When the
optical fluence is low, both the saturation and thermal nonlinea-
rities can be neglected, and thus Feff � F. As the optical fluence
increases, the two nonlinear effects compete with each other as
determined by the physical properties of both the absorbers and
the medium. It is worth noting that, by providing the PA signal with
nonlinear dependence on the optical fluence, both of the nonlinear
effects can be used for sub-diffraction PA imaging (i.e., PAM with a
lateral resolution finer than the optical-diffraction limit).

The excitation pulse width is also important in optimizing PA
signal generation. Simply speaking, the excitation pulse width
should be chosen according to the targeted detection bandwidth.
In PAM, the stress confinement on the axial direction requires a
pulse width to be less than the acoustic transit time across the
resolution voxel (typically on the scale of nanoseconds). The
excitation pulse width can affect the axial and lateral resolutions of
AR-PAM, and the axial resolution of OR-PAM. In addition, the pulse
width is related to the generated PA signal amplitude at the target.
As shown in Fig. 2, when the stress confinement is not satisfied, i.e.,
the excitation pulse is long compared with the stress confinement,
the resultant PA pressure at the target is roughly inversely
proportional to the square of the pulse width [32]. In this sense, a
shorter pulse is more efficient in generating PA signals than a
longer pulse. However the increased PA signal mostly falls into the
high frequency region. As we know, after the low-pass filtering by
tissue, high frequency acoustic components will not be picked up
by the ultrasonic transducer, similar to the spatial saturation effect
discussed above [37,38]. As can be seen from Fig. 2, once the stress
confinement is satisfied, the excitation pulse can be approximated
as a delta function, and the resultant PA pressure at the transducer
surface relies only on the excitation pulse energy, and is not
sensitive to the pulse width anymore [39]. Therefore, it is not
necessary to further reduce the pulse width once the targeted
signal bandwidth is matched. The pulse width needs to be
optimized according to the desired spatial resolution or imaging
depth. Furthermore, because excitation intensity is pulse width
related, pulse width also affects PA signal generation through the
absorption saturation effect [35].

3. Noise in photoacoustic imaging

Noise is the fundamental limitation on PAM detection of single
molecules [15,16]. In PAM, noise mainly arises from three sources:
thermal acoustic noise from the medium, thermal noise from the
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ultrasonic transducer, and electronic noise from the amplifier. The
power spectral density (PSD) of thermal acoustic noise detected by
the ultrasonic transducer, which describes the distribution of noise
power per unit bandwidth as a function of frequency, is given by
[15]

Nað f Þ ¼ hdð f ÞkBT; (8)

where hd(f) is the transducer efficiency at frequency f, defined as
the fraction of acoustic power converted to electrical power; kB is
the Boltzmann constant (1.38 � 10�23 J/K); and T is the absolute
temperature of the medium in Kelvin.

An ultrasonic transducer also generates its own noise, which
can be modeled as Johnson noise [15]. When the transducer has an
internal resistance matched to the load resistance of its amplifier,
the power spectral density of the thermal noise generated by the
transducer is given by [15]

Ndð f Þ ¼ kBT: (9)

Finally, the electronic noise generated by the amplifier is given
by [15]

Namð f Þ ¼ Ndð f Þ½Fn � 1�; (10)

where Fn denotes the noise factor of the amplifier and has a typical
value of 2 over its bandwidth.

Summing the above three noise sources gives the total noise
power in PAM as

Pnoise ¼
Z
D f

d f ½hdð f Þ þ Fn�kBT; (11)

where Df is the detection bandwidth of the ultrasonic transducer.
Low-frequency narrow-band ultrasonic transducers made of
piezoceramics such as PZT-5 can readily achieve an efficiency hd

of 0.5 or better. In this case, the noise contributions from the
medium and transducer are within the same order of magnitude.
By contrast, high-frequency broadband transducers made of
piezopolymers such as PVDF typically have an efficiency hd of
0.001–0.01; hence, the ultrasonic transducer noise dominates.
To decrease the thermal noise in the medium, one might
attempt to chill the medium. However, while the noise amplitude
decreases as the square root of the temperature, the PA signal
amplitude drops much faster due to the linearly reduced thermal
expansion coefficient. At room temperature, a one degree
temperature drop results in a 0.2% decrease in the noise
amplitude and a 5% decrease in the PA signal amplitude.
Therefore, the chilling method is counter-effective. Certainly,
noise can be reduced by performing signal averaging, at the
expense of imaging speed. Alternatively, a noise reduction
solution is to decrease the detection bandwidth of the ultrasonic
transducer and its associated electronics [16]. For example, in
CW excitation mode, a narrow-band resonant ultrasonic trans-
ducer can be used with a lock-in amplifier, and thus a detection
bandwidth of �1 Hz can be readily achieved [15]. This translates
into a 1000 times reduction in noise amplitude, compared with
its counterpart in pulsed excitation with a detection bandwidth
of tens of megahertz. However, as discussed above, because the
pulsed excitation is much more efficient in generating PA signals
than the CW excitation, the SNR by pulsed excitation is still
higher than that by the CW excitation on the condition that the
same number of photons are delivered or ANSI safety limits are
observed [22]. In addition, since the axial resolution of PAM can
be approximately estimated as Ra � 0:88vs=D f , a narrow
detection bandwidth results in a degraded axial resolution
[10,40].

4. Ultimate detection sensitivity in PAM

In biomedical imaging, the most widely used parameter to
quantify detection sensitivity is the noise-equivalent concentra-
tion (NEC) or the noise-equivalent number of molecules per
resolution voxel (NEN). The latter is the product of the former and
the resolution voxel volume. In PAM, a few other quantities can
also be used for quantifying the detection sensitivity, including
noise-equivalent optical absorption coefficient (NEma) and noise-
equivalent pressure rise (NEP). These quantities are highly
interconnected but emphasize different aspects of the imaging
system. In our study of the ultimate detection sensitivity, we will
begin by considering NEP.

NEP is defined as the photoacoustic pressure at the target that
generates a transducer output equal to the noise amplitude. For an
ultrasonic transducer with a center frequency of f0 and a detection
bandwidth Df, if we assume that the detector efficiency is uniform
such that h(f) � h(f0), we have [15]

NEP �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTD f ½1 þ Fn=hð f 0Þ�Za

q
e�a f 2

0
LNAA=2

: (12)

Za denotes the characteristic acoustic impedance of the medium
(�1.5 � 106Rayls for water); L is the focal length of the transducer;
a denotes the acoustic attenuation coefficient in units of
Hz�2 m�1; and NAA is the numerical aperture of the acoustic lens.

The numerator of Eq. (12) is in fact the NEP at the transducer
surface [15], while the denominator denotes the acoustic loss
during propagation from the target to the transducer surface. As
can be seen, NEP increases with Df, and decreases with L and NAA.
Here, as an example, we will estimate the detection sensitivity of
the sub-wavelength photoacoustic microscopy (SW-PAM) devel-
oped by Zhang et al. [41]. For the spherically focused piezoelectric
transducer with a bandwidth of 50 MHz, a focal length of 6 mm,
and a detector area of �30 mm2 at room temperature, the NEP is
�77 Pa.

For a single molecule with an optical absorption cross section of
sa, if the molecule is much less than the acoustic wavelength, the
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generated PA pressure ps can be expressed as [15,32]

psðrÞ ¼ hthFsab
4pt2C pr

; (13)

where r is the distance from the molecule to the point of
measurement.

Combining Eqs. (12) and (13), we can estimate the number of
molecules required to generate PA pressure equal to NEP, referred
to as the noise equivalent number of molecules (NEN).

NEN ¼ NEP � 4pt2C p

hthFe�m0tLsab
; (14)

where m0t denotes the optical transport interaction coefficient of
tissue. As can be seen, NEN decreases with F and sa. For
nonfluorescent chromophores such as hemoglobin and melanin,
hth � 1. In SW-PAM, with the ANSI permitted surface fluence of
20 mJ/cm2 at 532 nm,the estimated NAN of oxy-hemoglobin is
�1.6 � 104. It needs to be mentioned that the light attenuation in
tissue is neglected in SW-PAM, which may result in an underesti-
mation of NEN.

Then, we can quantify the noise-equivalent concentration NEC
as

NEC ¼ NEN

VR
; (15)

and the noise-equivalent absorption coefficient NEma as

NEma ¼ NEC � ja; (16)

where VR denotes the spatial resolution volume, and ja is the molar
extinction coefficient of the absorbing molecules. In SW-PAM, an
NEN of 1.6 � 104 oxy-hemoglobin molecules corresponds to an
NEC of �38 nM and an NEma of �1.5 � 10�3 cm�1.

All the above quantities are highly scalable. With regard to
different quantities, the ultimate detection sensitivity can be
achieved by optimizing corresponding imaging and/or molecule
properties. In particular, there is a trade-off between NEC and
spatial resolution. Relaxing the spatial resolution can improve NEC,
and vice versa. NEC is further limited by the permitted maximum
excitation fluence at the tissue surface and the optical attenuation
in tissue [4]. Of course, the safety standards are lower than the
damage thresholds. Therefore, it might be justifiable to use laser
exposure above the ANSI limits but below the damage thresholds
in some applications. In addition, NEC is highly target and
wavelength dependent. NEC can be enhanced by using contrast
agents with high absorption coefficients. For example, it has been
reported that PEGylated nanoshells have an absorption cross-
section at 800 nm that is 6.5 � 105 times as large as that of
hemoglobin at 532 nm [42].

5. High-sensitivity PAM systems

Biological systems need to be studied on both macroscopic and
microscopic scales. By adjusting the excitation and detection
configurations, all of the key imaging parameters of PAM, including
spatial resolution, imaging depth and detection sensitivity, can be
scaled over a wide range with the same optical absorption contrast.
Such high scalability is critical for comprehensive study of
biological phenomena over different length scales, and for the
translation of laboratory discovery to clinical practice. Compre-
hensive details about PAM characterizations and biomedical
applications can be found in previous Review articles [1,10], and
a summary of the scalable imaging performance of representative
PAM systems is shown in Fig. 3. To achieve the ultimate detection
sensitivity, PAM needs to optimize its optical illumination and
acoustic detection, based on the desired imaging specifications.
5.1. Optimal optical excitation in PAM

The major goal of optical design in PAM is to maximize the
delivered optical fluence to the target, especially at depths beyond
the optical diffusion limit. In fact, the major difference between
OR-PAM and AR-PAM lies in the optical excitation configuration. In
OR-PAM, the laser beam is tightly focused to a diameter ranging
from sub-micrometer to a few micrometers. The acoustic detection
area is generally more than 100 times larger than the optical
excitation area. By contrast, in AR-PAM, the laser beam is only
loosely focused with a diameter of a few millimeters in the optical
quasi-diffusion regime. Due to the weak optical focusing and the
strong optical scattering, the optical excitation area is much wider
than the acoustic detection zone. Therefore, in terms of laser
energy usage, OR-PAM is at least two orders of magnitude more
efficient than AR-PAM. While AR-PAM typically requires an
excitation pulse energy on the level of tens of millijoules, OR-
PAM needs only a few hundred nanojoules. Therefore, the light
delivery in OR-PAM is generally not a concern. However, when the
imaging depth goes deeper than the optical diffusion limit, optical
focusing becomes so inefficient that OR-PAM gradually transits
into AR-PAM [43,44]. Here, we will mainly discuss optimal light
delivery in AR-PAM.

Although AR-PAM relies on diffuse photon absorption for
imaging deep targets, there exist optimal illumination schemes
that most efficiently deliver photons to the targets and result in the
best detection sensitivity [45]. In AR-PAM, two illumination
patterns have been explored: bright-field illumination and dark-
field illumination. Compared with dark-field illumination, bright-
field illumination is more efficient in delivering optical energy to
shallow depths, due to the relatively short photon path length and
small excitation beam spot [46]. However, Monte Carlo simula-
tions show that, when the desired imaging depth is beyond 2 mm
in bright-field illumination, the optical fluence at the tissue surface
is at least 10 times higher than that at the targeted depth. It might
be challenging to delivery enough photons to the targeted depth
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without causing thermal damage to the tissue surface. By contrast,
in dark-field illumination, a ring-shape illumination pattern is
coaxially aligned with the focused ultrasonic transducer [12,13].
Compared with bright-field illumination, the large illumination
area in dark-field reduces the difference between the optical
fluence at the tissue surface and deep region, and reduces the
otherwise strong interference of the extraneous PA signal from the
superficial area.

In dark-field AR-PAM, the ring shape illumination can be
formed by the combination of a spherical conical lens and a weakly
focusing optical condenser. By changing the inner radius and the
incident angle of the illumination laser beam, its geometric focal
depth can be adjusted. However, due to the strong optical
scattering in tissue, the highest optical fluence region, referred
as the effective optical focus, is generally shallower than the
geometrical optical focus. The effective optical focus should ideally
overlap with the ultrasonic focus, which, however, is challenging
when the targeted imaging depth is more than 1 mm. In dark-field
AR-PAM, Monte Carlo simulations have been used to study the
influence of two parameters, the inner radius and the incident
angle, on the optical fluence and the effective optical focus [45,47].
The depth of the effective optical focus increases with the inner
radius of the dark field, suggesting that a larger dark field is
required to image a deeper target.

There are some other considerations in the optical design in
PAM. Compared with free-space light delivery, fiber-based light
delivery is less efficient and limited by the fiber coupling efficiency
and the damage threshold of the optical fiber [11,48]. However,
fiber-based light delivery is preferred in high-speed PAM systems
due to its ease of routing [48,49]. While multi-mode fiber or fiber
bundle is used in AR-PAM for maximum light delivery [12,50,51],
single-mode fiber is needed in OR-PAM for optimal focusing
capability [43,48].

5.2. Optimal acoustic detection in PAM

The importance of optimal acoustic detection in PAM can never
be over emphasized. So far, piezoelectric ultrasonic transducers
[16] and optical-acoustic detectors [52–56] have been used to
detect the wide-band acoustic waves in PAM. Optical interferom-
eters, such as a Fabry-Perot ultrasound sensor, have several
advantages over conventional piezoelectric transducers: (1) the
all-optical detection eliminates the water environment required
for acoustic propagation, although the optical sensor is still in
acoustic contact with the tissue surface; (2) the transparent nature
of the optical sensors reduces the engineering difficulty for the
combination of PAM with other optical imaging modalities; and (3)
the optical sensors are relatively easy to miniaturize for PA
endoscopy. However, optical sensors are typically less sensitive
than piezoelectric detectors. For example, an NEP of 8 Pa has been
achieved by a Fabry-Perot (FP) ultrasound sensor over a 20 MHz
bandwidth, while an NEP of 0.13 Pa has been achieved by a
piezoceramic transducer with a similar bandwidth and a diameter
of 6 mm [15,57,58]. However, the sensitivity of a piezoelectric
detector falls off with decreasing element size, whereas the
sensitivity of an optical sensor is largely independent of the
element size. Below a certain breaking-even point in element size,
the optical sensor provides higher sensitivity. This breaking-even
point depends on a variety of factors such as the NEP of the optical
sensor and the material of the piezoelectric detector as well as the
bandwidth. As an approximate estimation, given the NEPs of FP
sensors and PVDF detectors reported in the literature, it appears
that the breaking-even point lies at a diameter of 1 mm for a
bandwidth of 20 MHz [59]. Nevertheless, because of the ease of
fabrication and high sensitivity, piezoelectric detectors are more
frequently used in PAM systems.
For ultrasonic detectors, detection sensitivity trades off with
detection bandwidth. Resonant ultrasonic detectors with a narrow
bandwidth are the most sensitive. However, unless working in CW
excitation mode, PAM generally uses wideband ultrasonic
detectors to accommodate the PA signals generated by pulsed
excitation. Therefore, it is logical to choose acoustic detectors that
best match the bandwidth of generated PA signals. Four
piezoelectric materials are commonly used for wideband ultra-
sound detection in PAM: lithium niobate, quartz, PVDF and PZT-5
[16,38]. Among them, lithium niobate and quartz have the lowest
sensitivity, but they are easy to polish and thus widely used for
detecting ultrasonic signals above 30 MHz. PZT-5 detectors have
the best sensitivity, but have very high acoustic absorption above
20 MHz, and thus are typically used for relatively low frequency
ultrasound detection. PVDF has a moderate sensitivity, in between
lithium niobate/quartz and PZT-5. Because it has a similar acoustic
impendence (�2.5 � 106 Rayls) to biological tissue
(�1.5 � 106 Rayls), PVDF detectors have the lowest acoustic
reflective loss at the detector surface. Recently, novel piezo-
composite materials, e.g., PZT-epoxy composite, have been
developed to provide greater detection sensitivity and bandwidth
than the traditional piezoelectric materials [16].

5.3. Optical-acoustic combination in PAM

Unlike pure optical or ultrasound imaging, where the same
optical or acoustic pathway can be shared by both excitation and
detection, PAM needs to combine its optical excitation and acoustic
detection. On one hand, the fact that excitation and detection have
different energy formats naturally eliminates the leakage of the
excitation signal into the detection system. On the other hand, it
increases the engineering complexity of optical-acoustic combi-
nation for optimal detection sensitivity.

Generally speaking, in AR-PAM, the optical-acoustic combina-
tion favors the maximum delivery of photon energy, while in OR-
PAM, the optical-acoustic combination favors the most efficient
detection of the acoustic energy. In AR-PAM, because the laser
beam is only weakly focused and there is virtually no limitation on
the optical working distance, the spherically focused ultrasonic
transducer is directly positioned coaxially with the illumination
beam. Except for the acoustic transmission loss during propaga-
tion, there is basically no additional acoustic loss in this optical-
acoustic combination.

In OR-PAM, because the laser beam is tightly focused and the
optical objective lens has a limited working distance, the focused
ultrasonic transducer cannot be directly positioned underneath
the lens without blocking the optical focusing. To achieve confocal
alignment of the optical and acoustic beams, transmission-mode
and reflection-mode OR-PAM systems have been developed. In
transmission-mode OR-PAM [41,60,61], the objective and ultra-
sonic transducer are on opposite sides of the sample. Typically, the
ultrasonic transducer is on top of the sample for water coupling.
This configuration is straightforward and presents little difficulty
in the optical-acoustic combination, even for optical objectives
with a high numerical aperture (NA). However, transmission-mode
OR-PAM is greatly limited: it can image only thin samples, and is
thus not suitable for many in vivo applications. By contrast, in
reflection-mode OR-PAM, the optical objective and ultrasonic
transducer are both on top of the sample. While reflection-mode
OR-PAM is not limited by the sample thickness, its implementation
is more complicated, making it difficult to realize a large NA in both
optical illumination (for high spatial resolution) and ultrasonic
detection (for high sensitivity) [62]. Further, when wide-range
optical wavelengths are required in OR-PAM imaging, it can be
difficult to maintain the optical-acoustic confocal alignment due to
the severe chromatic aberration of the objective lens [63].
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So far, three methods have been explored for optical-acoustic
combination in reflection-mode OR-PAM. The first method uses a
customized ring-shape focused ultrasonic transducer, which has a
central hole to pass the focused optical beam (Fig. 4a) [44,64]. The
ultrasonic transducer is coaxially aligned with the objective lens to
a common focus. A derivation of this design is to use a customized
parabolic mirror with a conical hole to focus and redirect the
ultrasonic waves [62]. Because of the central hole, the acoustic
focusing is degraded and there is at least �10% acoustic energy
loss. The most significant drawback of this design is that these ring-
shape transducers are not commercially available and thus have
very limited choices. The second method uses a customized
optical-acoustic combiner to redirect the optical or acoustic beam
(Fig. 4b). In this design, a silicone oil layer sandwiched by two
prisms, which is optically transparent but acoustically reflective, is
used to achieve the confocal and coaxial alignment of the optical
and acoustic beams [11,48]. Alternatively, a thin aluminum coating
(�100 nm thick) between two prisms, which is optically reflective
but acoustically transparent, can be used (Fig. 4c) [49,65]. The
acoustic energy loss inside the combiner is negligible. However,
this design is typically too big to be used with high NA objectives
due to their short working distances. Another drawback is that
only a flat transducer attached to an acoustic lens can be used. The
acoustic impedance mismatch between the acoustic lens (glass:
�12.1 � 106 Rayls) and water causes a 30% acoustic energy loss.
The third method uses a reflective dark-field optical objective
(Fig. 4d) [63]. Due to the long working distance of the reflective
dark-field objective (>20 mm), a commercial focused ultrasonic
transducer can be placed directly underneath the objective. The
objective and the ultrasonic transducer are aligned coaxially and
confocally for maximum sensitivity. This design can achieve a large
NA in both optical illumination (NA: 0.6) and ultrasonic detection
(NA: 0.5). Moreover, an impedance matching layer (1/4 wave-
length thick) can be coated to the ultrasonic transducer surface,
and thus the acoustic energy loss due to reflection will be reduced.
Multiple matching layers can be used to further improve the
acoustic transmission, though the optimization is considerably
more complex [38]. In addition, unlike a refractive based objective,
the reflective objective can cover a wide wavelength range without
degrading the optical-acoustic confocal alignment.

There are several reported optical-acoustic combination
designs in PAM which have gained other benefits at the cost of
detection sensitivity. Off-axis PAM seeks to simplify the optical-
acoustic alignment by placing a commercial ultrasonic transducer
off-axis to the excitation laser beam [66]. Signals generated in the
overlap of the illumination and detection zones are detected,
providing the additional benefit of quasi-dark-field detection.
However, this design has a very limited acoustic NA (<0.2) and
thus suffers from low detection sensitivity. In addition, this design
degrades the axial resolution, e.g., two times degradation at 608 off
axis. Fabry-Perot ultrasound detectors are also used in OR-PAM
[58]. The Fabry-Perot film is transparent for the excitation laser
beam but reflective for the interrogation CW laser beam, so the
excitation and detection can be easily configured in reflection-
mode. However, as discussed above, the detection sensitivity of the
Fabry-Perot detector is weaker than that of a commercial
piezoelectric transducer.

6. Contrast agents for PAM

Both endogenous and exogenous contrast agents have been
explored by high-sensitivity PA imaging. In biomedical studies, the
advantages of endogenous contrast agents are undeniable. They
are nontoxic and do not perturb the original tissue microenviron-
ment; moreover, they are usually abundant in tissue and do not
require costly and time-consuming regulatory approval. The most
commonly imaged endogenous contrast agents in PAM can be
classified into two categories, based on their primary absorbing
wavelengths: (1) in the ultraviolet (UV) (180–400 nm) and visible
(400–700 nm) regions, the primary absorbers for PA imaging
include DNA/RNA [64,67], cytochrome c [60,68], bilirubin [69],
myoglobin [60], hemoglobin [3] and melanin [70]; and (2) in the
near-infrared region (700–1400 nm), lipid [41,71,72], water [73]
and glucose [74] are the major absorbers for PA imaging. Fig. 5
summarizes the absorption spectra of common endogenous
contrasts imaged by PAM. Among them, hemoglobin is most
commonly used for PA vascular imaging in the visible wavelength
region, where the imaging contrast between blood vessels and
background tissues is more than 100. An NEC of 0.38 mM and an
NEN of 0.27 zeptomol of hemoglobin (�160 molecules) have been
experimentally demonstrated by sub-wavelength OR-PAM [41].
The detection sensitivity of hemoglobin by representative PAM
systems is quantified using in vivo data reported in the literature
(Fig. 6). It shows that detection sensitivity (NEN) increases with the
imaging depth, another scalability of PAM.

Exogenous contrast agents have two advantages over endoge-
nous ones [2,75]. First, the chemical and optical properties of
exogenous contrast agents can be specifically engineered for
maximum detection sensitivity. Second, exogenous contrast agents
can be conjugated with targeting molecules (e.g., antibodies) to
selectively bind to disease-specific cell surface receptors. So far,
microbubbles, organic dyes, nanoparticles, and reporter gene
proteins have been used as PAM contrast agents, enabling chemical,
molecular and genetic imaging. To achieve deep penetration and
avoid background absorption (e.g., by hemoglobin and water), most
of these exogenous contrasts work in the red or near-infrared
spectral regions. Among them, nanoparticles have been most widely
used as PAM imaging contrasts due to their excellent optical
absorbing capabilities and variety of sizes, shapes and compositions
[2]. A low NEN of seven nanotubes has been reported with a laser
fluence of 100 mJ/cm2 at 900 nm [76]. In particular, because of their
inert chemical properties, gold nanoparticles have been extensively
investigated for tumor targeting [77–80], cortical vasculature



200 40 0 60 0 80 0 100 0 120 0
10-4

10-3

10-2

10-1

100

101

102

103

104

105

Wave leng th (nm)

Ab
so

rp
tio

n 
co

ef
fic

ie
nt

 (c
m

-1
) Melanin

HbRHbO2

Lipid

Water

DNA

RNA

MbRMbO2Bilirub in

Fig. 5. Absorption spectra of major endogenous contrast agents in biological tissue

at normal concentrations. Oxy-hemoglobin (HbO2) and deoxy-hemoglobin (HbR),

150 g/L in blood; lipid, 20% by volume in tissue; water, 80% by volume in tissue;

DNA and RNA, 1 g/L in cell nuclei; melanin, 14.3 g/L in medium human skin;

reduced myoglobin (MbR) and oxy-myoglobin (MbO2), 0.5% by mass in skeletal

muscle; bilirubin, 12 mg/L in blood.

Reprinted with permission from [10].

102 103 104 105 106 107 108 109 10101011101210-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

Molar ex tinction  coeff icient (cm-1/M)

N
oi

se
 e

qu
iv

al
en

t m
ol

ar
 c

on
ce

nt
ra

tio
n 

(M
)

Hb

Melanin

Microbub ble

ICG

IRD ye80 0

MB

mCherry

EGFP

RFP

iRFP

EB

GNC GNR

GNB

SWNT

Fig. 7. Reported noise equivalent molar concentrations (NEC) of major endogenous

and exogenous contrast agents, versus their molar extinction coefficients. Due to

the lack of complete information, the incident fluence is not corrected here. EB,

evens blue [139]; EGFP, enhanced green fluorescent protein [17]; GNB, gold

nanobeacon [140]; GNC, gold nanocage [83]; GNR, gold nanorod [141]; Hb,

hemoglobin [10]; ICG, indocyanine green [142]; IRDye800, near-infrared Dye800

[2]; iRFP, near-infrared red fluorescent protein [143]; MB, methylene blue [144];

mCherry, monomeric cherry protein [17]; Melanin, [145]; Microbubble, [146]; RFP,

red fluorescent protein [143]; SWNT, single walled nanotube [76]. The dashed curve

is power function fitting y = 0.1x�1, where y denotes NEC in molars and x denotes

the molar extinction coefficient in cm�1/M. Note that xy = 0.1 cm�1, which is the

noise-equivalent absorption coefficient (NEma) at depths > 3 mm.

J. Yao, L.V. Wang / Photoacoustics 2 (2014) 87–101 95
enhancement [81] and sentinel lymph node mapping [82–84].
Notably, due to the strong absorbing, single nanoparticle detection
has been achieved by using OR-PAM with diffraction-limited or sub-
diffraction-limited resolution [41,85–87].

Because of their dramatically different optical absorbing
properties, the reported detection sensitivity (NEC) for exogenous
contrast agents varies from millimolar to picomolar. Roughly, the
reported NEC is on the level of millimolar for microbubbles,
micromolar for organic dyes, picomolar for nanoparticles, and
nanomolar for fluorescent proteins [10]. Fig. 7 summarizes the
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reported PAM detection sensitivity (NEC) of representative
endogenous and exogenous contrast agents.

7. High-sensitivity imaging and sensing by PAM

By offering high-resolution images with unique optical
contrast, PAM has so far been applied to numerous preclinical
and clinical studies, including vascular biology [88–90], oncology
[42,70,91–95], neurology [96–99], ophthalmology [100–104],
dermatology [105–109], gastroenterology [110–114], and cardiol-
ogy [41,115–117]. In the interest of brevity, only a few
representative applications that have demonstrated high detection
sensitivity are highlighted in this Review. Information about more
PAM applications can be found in recent Review articles
[2,9,118,119].

7.1. Label-free single-cell photoacoustic flowoxigraphy

With high detection sensitivity, OR-PAM is capable of studying
biological processes on the single cell level. Recently, by
integrating fine spatial and temporal scales, PA flowoxigraphy, a
new implementation of OR-PAM, has demonstrated multi-
parametric imaging of oxygen release from single red blood cells
(RBCs) in vivo (Fig. 8) [65]. By fast line scanning (20 Hz) along a
capillary with two wavelength excitations, PA flowoxigraphy can
simultaneously measure multiple hemodynamic parameters
that are required to quantify the oxygen release rate by RBCs.
Experimental results show that PA flowoxigraphy can be used
to image the coupling between neural activity and oxygen delivery
in response to different physiological challenges, which can be
useful in understanding how the brain is powered at the single
cell level.



Fig. 8. Single cell label-free photoacoustic flowoxigraphy in vivo. (a) Oxygen

saturation (sO2) mapping of the brain vasculature. (b) Single cell oxygen unloading

measurement was performed by fast line scanning along a capillary with two

wavelength excitations. Blood flows from left to right. The dashed arrow follows the

trajectory of a single flowing RBC. Scale bar: x = 10 mm, z = 30 mm. (c) Schematic of

the experimental setup for imaging neuron-single-RBC coupling in the mouse

visual cortex. The eye of a mouse was stimulated by a flashing LED. (d) Transient

responses to a single visual stimulation. Clear increases were observed in the

magnitude of the sO2 gradient (jj5sO2jj), blood flow speed (vf) and oxygen

unloading rate (rO2).

Reprinted with permission from [65].

Fig. 9. Magnetically enhanced photoacoustic detection of circulating tumor cells. (a)

In vitro testing setup for magnetically enhanced trapping of tumor cells. Magnetic-

nanoparticle labeled tumor cells were flowing in a plastic tube at 0.5 mm/s. (b)

Optical image of the tumor cells trapped by the magnet. (c) The increasing average

rate of circulating tumor cells (CTCs) in a vein of a tumor-bearing mouse ear over a

period of several weeks after the tumor inoculation, detected by magnetic enhanced

photoacoustic microscopy.

Reprinted with permission from [78].
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7.2. Photoacoustic detection of circulating tumor cells

Circulating tumor cells (CTCs) have been regarded as a potential
predictor for metastasis, a hallmark of tumor malignancy [120].
However, due to the limited CTCs in the early stage cancer, blood-
test-based ex vivo examination of CTCs is very challenging since it
requires a large blood sample. Alternatively, on-site photoacoustic
cytometry can be used to image the CTCs without drawing blood
[78]. For example, taking advantage of the strong optical
absorption of melanin at the near infrared wavelength, label-free
photoacoustic cytometry has been used to detect circulating
melanoma cells (CMCs) in the blood stream with a detection
sensitivity of 1 CMC/mL blood on a 50 mm vessel [121]. This
detection sensitivity can be improved by imaging a larger blood
vessel. By using targeting magnetic-enriched nanoparticles, in vivo

CTC detection has been demonstrated with a sensitivity of a few
CTCs in whole human blood (�5 L), which makes it possible for
early cancer detection (Fig. 9) [78]. Once detected, the captured
CTCs can be microsurgically extracted for molecular and genetic
tests or can be noninvasively ablated by therapeutic laser to
prevent metastasis.

7.3. Nanotube enhanced tumor targeting by PAM

Early cancer diagnosis requires that PAM detects a small tumor
with as few as 104 tumor cells [18]. However, in most non-
pigmented tumors, endogenous contrast does not provide ade-
quate sensitivity for PAM detection of a small number of malignant
tumor cells and their products. Exogenous tumor-specific contrast
agents with strong optical absorption are needed to improve the
detection sensitivity. Recently, ICG enhanced single walled
nanoparticles (ICG-SWNP) have been used in PAM of U87MG
tumors (Fig. 10) [76]. The ultrahigh surface-to-volume ratio of the
SWNPs allowed for efficient loading of the optical dye onto the
particle’s surface. It was estimated that �700 ICG molecules were
loaded onto one SWNP. The ICG-SWNPs were then conjugated to
cyclic Arg-Gly-Asp (RGD) peptides. The ICG-SWNP-RGD targeted
to avb3 integrin, which was overexpressed in tumor. In vivo
studies have demonstrated a high detection sensitivity of 170 pM
of ICG-SWNP-RGD at 2 mm depth [92]. Because each tumor cell
can attach �104 nanoparticles and the detection volume is
�0.1 mL, as few as �103 tumor cells are needed for PA imaging.

7.4. PAM sensitivity of other derived parameters

Originating from optical absorption, photoacoustic signals can
be used to derive a number of physical, chemical and functional
parameters of the absorber and its microenvironment, such as the
oxygen saturation of hemoglobin [118,122,123], blood flow speed
[64,91,124–128], pH [129], nonradiative relaxation time [35] and
temperature [30,31]. Since a single parameter may not be able to
fully reflect the true physiological and pathological conditions,
multi-parameter PAM can provide a more comprehensive under-
standing, thus benefiting the diagnosis, staging and treatment of
diseases. Here, a few representative parameters are discussed.

The oxygen saturation of hemoglobin (sO2) is an important
indicator of tissue oxygenation and viability. In particular, hypoxia
is a hallmark of late-stage cancers [120] while hyperoxia is
associated with early-stage cancers [130]. From fluence-compen-
sated PAM measurements at two or more wavelengths, the relative
concentrations of the two forms of hemoglobin can be quantified
through spectral analysis, and thus sO2 can be computed. The
detection sensitivity of sO2 is largely affected by spectral variations
in the local fluence, owing to wavelength dependent optical
absorption and scattering in the surrounding tissue. By choosing
optimal optical wavelengths that minimize the condition number



Fig. 10. High sensitivity photoacoustic imaging of tumor enhanced by targeted nanoparticles. (a) Chemical structure of single-walled carbon nanotubes conjugated with

cyclic Arg-Gly-Asp (RGD) peptides (SWNT-RGD). (b) Fluorescence image (red) of a mouse injected with quantum dot conjugated RGD particles (QD-RGD). The white arrow

indicates the tumor location. The other bright spots on the image represent different organs in which QD-RGD non-specifically accumulated. (c) Horizontal and (d) vertical

slices in the 3D photoacoustic image of a mouse injected with SWNT-RGD (shown in green), superimposed on the ultrasound images (shown in gray).

Reprinted with permission from [76].
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of the inversion matrix and using a model-based fluence
correction, an sO2detection sensitivity of 1% has been demonstrat-
ed in phantom studies [131]. PAM has been used to study the
temporal variations in a mouse brain in response to oxygenation
alternating between hyperoxia and hypoxia [132]. A detection
sensitivity of 3.6% change in oxygenation has been reported in vivo,
which enables PAM monitoring of weak brain activity via
hemodynamic responses. The detection sensitivity of sO2 can be
potentially further improved by using wavelength-independent
methods based on the acoustic spectrum [118,123].

Blood flow helps keep tissue alive by distributing nutrients such
as oxygen and glucose. Using the absorption contrast provided by
hemoglobin, PAM can measure blood flow with a detection
sensitivity one order of magnitude better than that achieved by
Doppler ultrasound [64]. Recently, high-sensitivity photoacoustic
flowmetry assisted by high-intensity focused ultrasound (HIFU)
has been reported (Fig. 11a) [133]. This novel method employs
HIFU to modulate a heating pattern in the flowing medium,
followed by photoacoustic monitoring of the movement of the
thermally tagged medium. Here, both the HIFU heating and
photoacoustic detection can focus at depths beyond the optical
diffusion limit. This method can also be applied to a continuous
medium, i.e., a medium without discrete particles resolvable by
photoacoustic imaging. A flow speed detection sensitivity of
0.24 mm/s has been experimentally demonstrated in a blood
phantom covered by 5-mm-thick tissue.

During thermotherapy, it is necessary to monitor the local
temperature distribution in the target tissues for safe deposition of



Fig. 11. High sensitivity photoacoustic detection of blood flow and temperature. (a) Blood flow measured by thermally tagging part of the flowing medium using a HIFU

transducer and monitoring the tagged medium using photoacoustic imaging. Each horizontal line in the right figure is extracted from one photoacoustic image on the left. (b)

Photoacoustic temperature measurement based on the dual-temperature dependence of the Grueneisen parameter and speed of sound. The A-line PA signals of a 3 mm

blood-filled plastic tube at different temperatures are assembled and aligned at the top boundary for better visualization of the change in acoustic flight time. As the

temperature increased, the PA signal amplitude increased, and the acoustic flight time between the two tube boundaries decreased. TB, top boundary; BB, bottom boundary.

(c) Two example A-line signals at 28 8C and 46 8C, showing the temperature dependence of the PA signal amplitude and acoustic flight time.

Reprinted with permission from [133] for (a) and [30] for (b and c).

J. Yao, L.V. Wang / Photoacoustics 2 (2014) 87–10198
heat energy and efficient destruction of tumor and abnormal cells.
Taking advantage of the temperature dependence of the Gruenei-
sen parameter, PAM is capable of measuring the relative change in
temperature with a high sensitivity of 0.15 8C [31]. Recently, a new
photoacoustic thermometry has been developed by using the dual
linear temperature dependences of the Grueneisen parameter and
the speed of sound in tissue (Fig. 11b and c) [30]. Taking
ratiometric measurements at two adjacent temperatures elim-
inates factors that are temperature irrelevant but difficult to
correct for in deep tissue. Absolute temperatures of blood-filled
tubes embedded �9 mm deep in chicken tissue were measured
with a detection sensitivity of �0.6 8C, in a clinically relevant range
from 28 8C to 46 8C.

8. Summary

The recent progress in PAM has been greatly supported by
advances in laser technology, ultrasound detection methods, signal
processing, and nanotechnology. From the engineering perspec-
tive, the imaging performance of PAM has been dramatically
improved in almost every aspect: spatial resolution, imaging
speed, penetration depth, detection sensitivity, and functionality.
From the application perspective, PAM has been used in a large
number of preclinical and clinical studies in cancers, diabetes,
cardiovascular disease, and neural disorders. Further, PAM systems
have been actively developed for small animal imaging and human
skin imaging. The fast development in PAM technology has, in turn,
triggered growing contributions from chemistry and nanotechnol-
ogy, where a multitude of novel contrast agents have been
developed, from targeted nanoparticles and organic dyes to
genetically expressed markers.

With high detection sensitivity, novel PAM systems utilizing
pulsed excitations and wideband ultrasonic transducers have great
potential for detecting small tissue structures, such as early stage
cancer, and weak physiological processes, such as neural
transmission. To achieve the ultimate detection sensitivity, all
the engineering aspects of a PAM system need to be carefully
optimized, for the desired imaging performance, in particular for
spatial resolution and imaging depth. The excitation fluence
should be controlled under the safety standard, while an optimal
wavelength should be chosen for maximum PA signal allowed by
the targeted imaging depth. At high excitation intensity, the
nonlinear PA effects, such as absorption saturation and thermal
nonlinearity, need to be considered. While excitation energy
delivery is not a concern for OR-PAM, optimal beam diameters and
incident angles exist for dark-field AR-PAM, depending on the
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targeted imaging depth. The pulse width needs to be selected to
match the detection bandwidth. Wideband ultrasound transducers
should be selected with an optimal piezoelectric material, central
frequency and bandwidth matching the desired penetration or
spatial resolution. While piezoceramic transducers are most
sensitive in the frequency range below 20 MHz, lithium niobate/
quartz transducers can cover the frequency range from 30 MHz to
200 MHz. Recently, novel composite piezoelectric materials have
been used for high frequency ultrasonic transducers
(>50 MHz)[86,134]. The combination of the optical excitation
and acoustic detection also needs to be optimized, in particular for
OR-PAM. While more design considerations are given to optimiz-
ing the light delivery in OR-PAM, maximizing the acoustic
detection is more important in AR-PAM. Further improving the
detection sensitivity of PAM relies on advances in both engineering
and chemistry. In engineering, the most important factor is the
development of ultrasonic transducers with high piezoelectric
efficiency and low acoustic impedance, a process which includes
the optimal choice of piezoelectric material, ultrasonic detection
bandwidth and the backing/damping material. In chemistry, the
most important factor is to develop novel contrast agents with high
optical absorption and strong affinity for the targeted sites.
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