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ABSTRACT
Photoacoustic tomography (PAT) is a rapidly-evolving
medical imaging modality that combines optical absorp-
tion contrast with ultrasound imaging depth. One chal-
lenge in PAT is image reconstruction with inadequate
acoustic signals due to limited sensor coverage or due to
the density of the transducer array. Such cases call for
solving an ill-posed inverse reconstruction problem. In
this work, we use score-based diffusion models to solve
the inverse problem of reconstructing an image from lim-
ited PAT measurements. The proposed approach allows
us to incorporate an expressive prior learned by a dif-
fusion model on simulated vessel structures while still
being robust to varying transducer sparsity conditions.

Index Terms— Photoacoustic Tomography, Diffusion
Models, Image Reconstruction, Generative Modeling

1. INTRODUCTION
Photoacoustic tomography (PAT) is a low-cost, ionizing-
radiation-free technique for medical imaging. As such,
it is growing in popularity and used in practical appli-
cations such as diagnosing breast cancer [1]. PAT mea-
surements are sensor signals from a transducer array sur-
rounding the object of interest, which then must be re-
constructed into a human-interpretable image. However,
physical and resource limitations may make it impossible
to fully encompass the object with transducers (limited-
view problem [2]) or build a dense-enough array to pre-
vent aliasing (spatial-aliasing problem [3, 4]), limiting
the reliability of a direct inversion.

With inadequate measurements, PAT image recon-
struction can be formulated as an ill-posed inverse prob-
lem. Backprojection is a traditional solution but incor-
porates no priors and is prone to artifact-heavy recon-
structions [5]. Model-based methods combine the mea-
surement forward model with an image regularizer, but
they do not capture complex image statistics, resulting
in unrealistic reconstructions [6].

Deep learning poses an opportunity to incorporate
more sophisticated image priors into the reconstruction.
However, current deep-learning approaches are super-
vised with paired training data [7] and thus do not gen-

eralize to all measurement conditions. Practical applica-
tions call for a deep-learning approach that can be flexi-
bly used in different settings.

Diffusion models are state-of-the-art generative mod-
els that have achieved success on various inverse imaging
problems [8, 9, 10, 11, 12]. Song et al. [13] introduced a
way to condition the generated images of a trained dif-
fusion model on compressed-sensing measurements ob-
tained for MRI or CT. However, PAT image reconstruc-
tion is not a compressed-sensing problem and instead
involves dense, highly-correlated, time-varying measure-
ments.

We introduce a method for PAT image reconstruction
using a trained diffusion model. Our method is inspired
by Song et al. [13] but generalizes to any type of linear
inverse problem. We validate our approach on synthetic
vascular structure images under different measurement
conditions, including quantitative and qualitative com-
parisons to a supervised deep-learning method [7] and
total-variation (TV) regularization [14]. Our work offers
a technical contribution by proposing a new technique
for solving general linear inverse problems with diffusion
models, as well as a practical contribution by demon-
strating the utility of diffusion models for PAT imaging.

2. BACKGROUND

2.1. Photoacoustic tomography (PAT)

PAT imaging maps optical absorption in scattering tis-
sues with only surface-level measurements. In this work,
we consider a ring-array-based PAT system for imaging
a human breast. The breast of the patient is placed in-
side a ring of ultrasound sensors (Fig. 1). Short-pulsed
laser light incident on the patient’s skin diffuses deep
into the breast tissue, and then the absorbed energy by
blood vessels generates ultrasonic waves as a result of
thermoelastic expansion. The ultrasonic waves are de-
tected by the transducers. This spatio-temporal data is
used to reconstruct the image of the object [15].

There are currently three major classes of image re-
construction methods for PAT: back-projection, time-
reversal, and model-based. Back-projection methods do
analytical inversion [16] and, while fast and tractable,
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Fig. 1. PAT measurement acquisition. A ring of ultrasound
sensors (transducer array) surrounds the object to be imaged.
The transducer array receives photoacoustic signals emitted
in response to a laser pulse.

often lead to images with artifacts [5]. Time-reversal
methods, which use numerical simulations, give high-
quality images but are computationally intensive [17].
Model-based methods minimize the difference between
measured signals and predicted signals from an estab-
lished forward model, often a linear operator [6]. Model-
based methods are becoming more common due to their
independence from measurement geometry and balance
between computation and quality. Our work similarly
uses a linear forward model based on curve-driven model
matrix inversion (CDMMI) [6]. And while other deep-
learning model-based methods exist (e.g., plug-and-play
[18] and deep unrolling [19]), we leverage the strong prior
of a diffusion model to achieve greater image quality. We
note that concurrent work [20] applies diffusion models
to PAT with a focus on the spatial aliasing problem.

2.2. Diffusion models for image reconstruction

Diffusion models are state-of-the-art generative models
that learn to sample from an image distribution [21, 22,
23]. Recent methods have shown how to solve ill-posed
inverse problems with a trained diffusion model as the
prior [13, 8, 9, 11, 12], with most differing in the way
measurements are incorporated into the sampling pro-
cess of the diffusion model. Some of these methods have
been applied to medical-imaging tasks like magnetic res-
onance imaging (MRI) [13, 24, 25], computed tomogra-
phy (CT) [13], and ultrasound [26], but not to PAT. Our
work builds upon an approach that has a simple pro-
jection step to incorporate measurements but was pre-
viously limited to compressed-sensing forward matrices
[13]. By generalizing the projection step to any linear
forward model, we are able to address PAT.

2.3. Score-based diffusion models

Diffusion models learn to sample from an image distri-
bution through gradual denoising. Score-based diffusion
models model the process of adding noise to an image as

a stochastic differential equation (SDE) [27]:

dxt = f(xt, t)dt+ g(t)dwt, t ∈ [0, T ] (1)

where xt ∈ Rd is the image; f(xt, t) is the drift coefficient;
g(t) is the diffusion coefficient; and dwt is infinitesimal
white noise. This SDE gives rise to a time-dependent
distribution pt(xt). Higher time t indicates more noise
in xt. We specifically use the Variance-Preserving (VP)
SDE [27] with T = 1, which ensures that pT ≈ N (0, I).

Sampling from the clean distribution p0 is based on
the following reverse SDE:

dxt =
[
f(xt, t)− g2(t)∇xt log pt(xt)

]
dt+ g(t)dwt. (2)

Although the gradient ∇xt
log pt(xt) is unknown for an

arbitrary image distribution p0, it can be approximated
with a convolutional neural network (CNN) called a score
model sθ: sθ(x, t) ≈ ∇x log pt(x). The score model es-
sentially learns to nudge images to higher probability.

Sampling starts with a noise image xT ∼ N (0, I) that
is gradually denoised by solving the reverse SDE (Eq. 2)
with ∇x log pt(x) replaced by sθ(x, t). Any numerical
SDE solver can be used. We use a second-order solver
via Predictor-Corrector sampling [27].

3. METHOD

Fig. 2. Our conditional sampling process with a trained diffu-
sion model. Given PAT measurements, sampling starts with
an image of Gaussian noise, which is transformed over many
steps into the reconstructed PAT image. Each step involves
a measurement-conditioning update (blue arrow) followed by
a denoising update (black arrow) that takes the image closer
to the learned prior.

Our approach adapts the unconditional sampling
procedure to be conditioned on PAT measurements y.
Following Song et al. [13], we model a diffusion pro-
cess on y and at each diffusion time t, modify the
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image xt to be consistent with the perturbed measure-
ments yt. Song et al. define the following measurement-
conditioning step, which assumes an invertible matrix T
and a measurement-reduction operator P(Λ):

x′
t ← T−1[λΛP(Λ)yt + (1− λ)ΛTxt + (I−Λ)Txt]. (3)

Essentially, x′
t balances the image xt produced by the

unconditional diffusion model and the measurements yt,
with λ ∈ [0, 1] tuning the weight of the measurements.

Our inverse problem, however, does not involve an
invertible T matrix or subsampling operator P(Λ).
Instead, our CDMMI forward matrix [6] is an ill-
conditioned tall matrix that produces highly-correlated
measurements, making Eq. 3 unusable. We formulate a
new measurement-conditioning step by solving a regu-
larized maximum-likelihood objective:

x′
t = arg min

z∈Rd

[
(1− λ)∥z− xt∥22 + λ∥yt −Az∥22

]
(4)

=
(
λA⊤A+ (1− λ)I

)−1 (
(1− λ)xt + λA⊤yt

)
, (5)

where A is any forward matrix (in our case, the CD-
MMI matrix). Alg. 1 details our conditional sampling
procedure, which is visualized in Fig. 2.

Algorithm 1 Our conditional sampling process, where
p0t(yt | y) comes from the diffusion SDE (Eq. 1), and ∆x′

t is
the SDE solver output at time t given x′

t.
Require: N,T,y,A, λ

t← T , ∆t← − T
N

, xT ∼ N (0, I)
while t > 0 do

yt ∼ p0t(yt | y)
x′
t ←

(
λA⊤A+ (1− λ)I

)−1 (
(1− λ)xt + λA⊤yt

)
xt+∆t ← x′

t +∆x′
t

t← t+∆t
end while
return x0

4. EXPERIMENTS

We performed experiments on simulated measurements
of both synthetic vascular images and a real breast-
tissue image. We compared to two baseline methods: (1)
maximum-likelihood with total-variation regularization
(TV) and (2) a fully-supervised deep-learning approach
called Sparse Artefact U-Net (SAU) [7]. Optimization
for (1) was done with the Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA) [28] [14]. (2) uses a
U-Net CNN [29] to learn the error between naive re-
constructions and ground-truth images—it is important
to note that with this baseline, separate models must
be trained for each transducer configuration. To create
the paired training data, we simulated measurements of
the ground-truth images and used Tikhonov-regularized
MLE for naive reconstructions from these measurements.

Fig. 3. Image reconstructions across meas. settings. Top
two diagrams illustrate the limited-view and spatial-aliasing
configurations, resp. (e.g., “LV74” refers to limited-view with
74% transducers). PSNR is on the bottom left of each image.
Our method’s results include one sample and the avg. and
std. dev. of 320 samples. The zoom-ins show high-fidelity
details from our method that do not appear in baseline re-
constructions. Overall, our method outperforms baselines
in SA settings but may be prone to hallucination for LV
(std. dev. maps show where hallucinations occur). Quali-
tatively, our samples tend to appear closer to the prior. The
mean of our samples generally outperforms baselines.

We created a dataset of synthetic vascular structure
images with Vascusynth [30], using the example param-
eters provided in the manual [31] but randomly setting
the number of vascular nodes in each image. 9900 images
were reserved for training our diffusion model and SAU,
and 2000 images were reserved for validation of SAU.

We consider two types of limited sampling patterns
of the transducer array: (1) limited view (LV) [2] and (2)
spatial aliasing (SA) [3], illustrated in Fig. 3. LV is more
challenging, as only a portion of the image circumference
is observable. SA spaces the transducers equally around
the circumference. We simulated measurements using a
CDMMI forward matrix for each sampling configuration
and added realistic Gaussian noise (30 dB SNR).

4.1. Image-reconstruction quality

In Fig. 4, we compare the average PSNR of reconstruc-
tions from our method versus those obtained with TV
regularization and SAU. For SA, our method consistently
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outperforms the baselines with a notable PSNR improve-
ment (e.g., 2.4 to 23.3 dB improvement over SAU across
all sparsity levels). For LV, SAU achieves slightly higher
PSNRs, but our approach still averages within one SAU
standard deviation. Fig. 3 shows reconstructions of an
example test image.
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Fig. 4. Average PSNR and SSIM on the 10-image test set
for TV, SAU, and our diffusion-model approach. “Diffusion
Average” computes the avg. PSNR or SSIM based on the em-
pirical mean of 320 samples; “Diffusion Sample” computes the
avg. PSNR or SSIM based on all samples for each measure-
ment. Our samples beat both baselines for SA configurations
and perform on par for LV, while our averaged reconstruc-
tions outperform baselines on nearly every configuration.

The diffusion model excels at generating images true
to its learned prior, but this also means that it may
hallucinate structures when given very limited measure-
ments. In particular, we find that our PSNR perfor-
mance is worse than SAU in the LV setting due to hallu-
cination. Although qualitatively our image samples are
more visually-convincing, certain features in the image
should be cautiously interpreted. One way to assess the
reliability of reconstructed features is to compute the
empirical standard deviation of many samples from the
conditional sampling process (Alg. 1).

4.2. Flexibility

We observe in Fig. 5 that transferring the same SAU to
a different measurement setting results in significantly
lower performance. In constrast, our method adapts to
different settings without retraining.

Our approach’s flexibility also applies to out-of-
distribution source images. Fig. 6 shows that our method
can plausibly reconstruct a breast image [1] from sim-
ulated PAT measurements with good PSNR in all but
the most extreme sparsity case, despite using a diffusion
model trained only on synthetic vascular images.

5. DISCUSSION

We have presented a method for unsupervised PAT im-
age reconstruction using a trained diffusion model. Our

Fig. 5. Comparison of SAU performance on a new transducer
pattern vs. our model and TV. Each model was tested on an
LV50 image, but the SAU model used was trained on SA50
reconstructions. PSNRs show that SAU does not generalize
across configurations. Zoom-in shows a GT feature that only
our method was able to recover.

Fig. 6. Real breast image. Our diffusion model and SAU
were each trained only on synthetic images. Ours produced
higher-fidelity reconstructions for all configurations except
LV26 (LV50 and SA25 shown here).

work builds upon a previous diffusion-model approach
both by proposing a new measurement-conditioning for-
mula suitable for any linear forward model and by tack-
ling the problem of PAT imaging. In our experiments
with simulated measurements, we find that our method
performs substantially better than traditional TV regu-
larization and competitively to a fully-supervised deep-
learning approach (and even better when taking the sam-
ple mean), without requiring retraining for every trans-
ducer pattern. We also show better reconstruction of an
out-of-distribution image of real breast tissue. Our work
establishes a promising path to leveraging deep-learned
priors for flexible photoacoustic tomographic imaging.
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